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Summary and Organization of the Report

Periodic resurfacing, rehabilitation, restoration, and reconstruction work is needed on the
aging highway system in the state of Ohio to maintain a desired level of service for the traveling
public. However, temporary work zones on highways disrupt the normal flow of traffic and
reduce the level of service. The increasing demand in maintaining an efficient highway system
provides the impetus to develop rational and rigorous computer models to help work zone
engineers create effective work zone traffic plans.

The objectives of the proposed research are to develop new computational models for
estimating the work zone capacity and queue length as a function of a large number of factors
impacting the work zone and queue length estimation and implement them into a user-friendly
interactive object-oriented software system for effective management of traffic in work zones.
This research will explore the use of several recent computing and information technologies: a)
case-based reasoning (CBR), b) neural networks, c¢) fuzzy logic, and d) object-orient
programming.

This report consists of six parts or manuscripts as follows:

Part I. CBR Model for Freeway Work Zone Traffic Management

Part 1l Freeway Work Zone Traffic Delay and Cost Optimization Model

Part I11 Radial Basis Function Neural Network for Work Zone Capacity and Queue Estimation

Part IV Neuro-Fuzzy Logic Model for Freeway Work Zone Capacity Estimation

Part V IntelliZone: Object-Oriented Model for Freeway Work Zone Capacity and Queue
Delay Estimation

Part VI Clustering-Neural Network Models and Parametric Study of Work Zone Capacity



In Part I, a CBR model is presented for freeway work zone traffic management. The model
considers work zone layout, traffic demand, work characteristics, traffic control measures, and
mobility impacts. A four-set case base schema or domain theory is developed to represent the
cases based on the above characteristics of the problem. It includes a general information set, a
problem description set, a solution (or control) description set, and an effects set. To improve the
interactivity of the CBR system and its user-friendliness, a hierarchical object-oriented case
model is developed for work zone traffic management. Three examples are presented to show the
practical utility of the CBR system for work zone traffic management.

In Part 11, a new freeway work zone traffic delay and cost optimization model is presented in
terms of two variables: the length of the work zone segment and the starting time of the work
zone using average hourly traffic data. The total work zone cost defined as the sum of user
delay, accident, and maintenance costs is minimized. Number of lane closures, darkness factor,
and seasonal variation travel demand normally ignored in prior research are included. In order to
find the global optimum solution, a Boltzmann-simulated annealing neural network is developed
to solve the resulting mixed real variable-integer cost optimization problem for short-term work
zones. The new model can be used as an intelligent decision support system a) to find the
optimum work zone segment length and the optimum starting time, b) to study the impact of
various factors such as number of lane closures and darkness, and c) to observe the relation
between the total work zone cost versus the work zone segment length and starting time in a
quantitative and rational way quickly.

The work zone capacity cannot be described by any mathematical function because it is a
complicated function of a large number of interacting variables. In Part I, an adaptive

computational model is presented for estimating the work zone capacity and queue length and



delay taking into account the following factors: number of lanes, number of open lanes, work
zone layout, length, lane width, percentage trucks, grade, speed, work intensity, darkness factor,
and proximity of ramps. The model integrates judiciously the mathematical rigor of traffic flow
theory with the adaptability of neural network analysis. A radial-basis function neural network
model is developed to learn the mapping from quantifiable and non-quantifiable factors
describing the work zone traffic control problem to the associated work zone capacity. This
model exhibits good generalization properties from a small set of training data, a specially
attractive feature for estimating the work zone capacity where only limited data is available.
Queue delays and lengths are computed using a deterministic traffic flow model based on the
estimated work zone capacity.

In Part 1V, a novel adaptive neuro-fuzzy logic model is presented for estimation of the
freeway work zone capacity. Seventeen different factors impacting the work zone capacity are
included in the model. They are 1) percentage of truck, 2) pavement grade, 3) number of lanes,
4) number of lane closures, 5) lane width, 6) work zone layout (lane merging, lane shifting, and
crossover), 7) work intensity (work zone type), 8) length of closure, 9) work zone speed, 10)
interchange effects (proximity of ramps), 11) work zone location (urban or rural), 12) work zone
duration (long-term or short-term), 13) work time (daytime or night), 14) work day (weekday or
weekend), 15) weather condition (sunny, rainy or snowy), 16) pavement conditions (dry, wet, or
icy), and 17) driver composition (commuters or non-commuters such as tourists). A neural
network is employed to estimate the parameters associated with the bell-shaped Gaussian
membership functions used in the fuzzy inference mechanism. An optimum generalization
strategy is used in order to avoid over-generalization and achieve accurate results. Comparisons

with two empirical equations demonstrate that the new model in general provides a more



accurate estimate of the work zone capacity, especially when the data for factors impacting the
work zone capacity are only partially available. Further, it provides two additional advantages
over the existing empirical equations. First, it incorporates a large number of factors impacting
the work zone capacity. Second, unlike the empirical equations, the new model does not require
selection of various adjustment factors or values by the work zone engineers based on prior
experience.

Existing computer models used to estimate queue delay upstream of the work zone have
a number of shortcomings. They do not provide any model to estimate work zone capacity,
which has a significant impact on the congestion and traffic queue delays. They cannot be used
to perform scenario analysis for work zones with various characteristics such as work zone
layout, number of closed lanes, work intensity and work time. In Part V, an object-oriented (OO)
model is presented for freeway work zone capacity and queue delay and length estimation. The
model is implemented into a interactive software system, called IntelliZone, using Microsoft
Foundation Classes (MFC) and a hierarchy of multiple specialized frameworks. A three-layer
application architecture is created to separate the application functions and classes from MFC
classes. The high-level application domain layer is divided into packages. IntelliZone’s capacity
estimation engine is based on pattern recognition and neural network models incorporating a
large number of factors impacting the work zone capacity. This research provides the foundation
for a new generation of advanced decision support systems for effective management of traffic at
work zones. IntelliZone allows work zone engineers to perform scenario analysis and create

traffic management plans consistently, reliably, and efficiently.

In Part VI, two neural network models, called clustering-RBFNN and clustering-BPNN

models, are created for estimating the work zone capacity in a freeway work zone as a function



of seventeen different factors through judicious integration of the subtractive clustering approach
with the radial basis function (RBF) and the backpropagation (BP) neural network models. The
clustering-RBFNN model has the attractive characteristics of training stability, accuracy, and
quick convergence. The results of validation indicate that the work zone capacity can be
estimated by clustering-neural network models in general with an error of less than 10%, even
with limited data available to train the models. Extensive parametric studies have been
performed on the influence of fifteen factors on the work zone capacity using these models. The
results of the parametric studies of main factors impacting the work zone capacity can assist
work zone engineers and highway agencies to create effective traffic management plans for work

zones quantitatively and objectively.

It must be pointed out that the development of the computational models and their
implementation into a software system is the major undertaking in this research project. The
neural network models developed in this research have been trained by data obtained from
several states. No data from Ohio were available to the authors and none was provided by
ODOT. Neural networks are known for their high adaptability. Similar to human beings, their
intelligence increases with additional training. As additional data become available the neural

network models can be retrained to improve their accuracy with a relatively small effort.
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CBR MODEL FOR FREEWAY WORK ZONE TRAFFIC MANAGEMENT
Asim Karim' and Hojjat Adeli’, Fellow, ASCE

ABSTRACT: A case-based reasoning (CBR) model is presented for freeway work zone traffic
management. The model considers work zone layout, traffic demand, work characteristics, traffic
control measures, and mobility impacts. A four-set case base schema or domain theory is
developed to represent the cases based on the above characteristics of the problem. It includes a
general information set, a problem description set, a solution (or control) description set, and an
effects set. To improve the interactivity of the CBR system and its user-friendliness, a
hierarchical object-oriented case model is developed for work zone traffic management. The
model is implemented into an intelligent decision-support tool to assist traffic agencies in the
development of work zone traffic control plans and to better design and manage work zones for
increased mobility and safety. Three examples are presented to show the practical utility of the
CBR system for work zone traffic management.
INTRODUCTION

Periodic reconstruction and maintenance of the freeway system is necessary to ensure that it
fulfils its long-term purpose of serving the transportation needs of the public efficiently and
economically. During the construction and maintenance operations the normal flow of traffic is
disrupted by either a change in the freeway geometry or a temporary freeway closure. Closure of

a freeway segment is not a feasible option on most freeways today. Therefore, reconstruction and
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maintenance operations have to be carried out without entirely closing the freeway segment and
in close proximity to traffic flow. Work zones on freeways have to be designed and managed to
ensure safety and mobility. The Manual on Uniform Traffic Control Device (FHWA, 2000a)
provides guidelines for the use of traffic control devices that inform and guide motorists through
the work zone with adequate protection for the workers. These guidelines were developed over
the years from studies of traffic control devices and their effectiveness in improving work zone
safety.

Recently, the Federal Highway Administration (FHWA) reviewed the state-of-practice in
work zone traffic management and found that no uniform and objective procedure exists for
quantifying the effects of various factors and determining the life cycle costs of work zone traffic
management plans (FHWA, 2000b). They also outlined several steps that should be taken by
state and local agencies to satisfy the expectations of the customer (the traveling public). Among
the policy, planning, design, and management related steps outlined is the recommendation to
“develop and/or enhance user friendly software to model work zone delay, queues and crashes,
calculate defendable road-user costs and proposed contract time, evaluate proposed changes to
the traffic control plan as well as analyze work zone crashes. All software must be sufficiently
flexible to allow for variable parameters to meet unique state/local conditions.” (FHWA, 2000b)
Towards this end, a Microsoft Excel-based software, called QuickZone, is being developed for
the FHWA for work zone user delay and cost quantification (Mitretek, 2000). The software
allows planners to model work zones and their associated traffic control plans and provides them
with basic delay and queue information that can be used for decision-making. A simple

macroscopic input-output traffic analysis is adopted in the software to arrive at the estimates.
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The practical usefulness of the software, however, is limited because it does not maintain a
history of previous decisions nor does it learn from them in reaching a better decision.
Furthermore, an input-output analysis assumes that the planner knows the effect of each work
zone configuration in terms of the reduction in roadway capacity (maximum number of vehicles
that can pass through a roadway segment in one hour under prevailing conditions, and expressed
as vehicles per hour per lane). This information is usually not available and the planner has to
make an educated guess, which may or may not be accurate thus leading to erroneous
conclusions.

Case-based reasoning (CBR) is a methodology for storing and retrieving previous design
decisions or cases and adapting them to the solution of new problem cases not found in the case
base (Leake, 1996; Maher and Pu, 1997). The CBR approach does not require a low-level
physical model of the problem. Rather, in a manner similar to human reasoning and decision-
making, it uses generic and problem specific similarity metrics to induce best solutions from
previously solved cases. This approach is appropriate for the work zone traffic management
problem for the following reasons: (1) Accurate mathematical models of work zone traffic flow
are not available, (2) there are only a finite number of cases to be considered, and (3) traffic
agencies can use previously solved cases to set up the case base and then build it up gradually.
WORK ZONES AND TRAFFIC MANAGEMENT

A work zone is a region within an existing freeway’s roadway where active maintenance,
rehabilitation, and/or reconstruction work is carried out. The freeway is not closed and traffic
and freeway work exist in close proximity to each other. A work zone thus represents a spatial
and temporal restriction on a freeway’s roadway that impacts the normal flow of traffic

negatively. The impact appears in the form of increased congestion, travel times, accidents, and a

11



greater level of dissatisfaction among the traveling public. Work zones are designed and
managed to minimize these effects and the overall cost.

Work zone costs are often divided into three components: construction/contracting cost
(CCC), road user cost (RUC), and maintenance of traffic cost (MTC) (Figure 1). Construction
and contracting cost is the amount charged by the contractor for the work plus any litigation and
liability cost. Road user cost is the result of the negative impact of the work zone on the normal
flow of traffic. Road user cost can be quantified in several ways including delay time, queue
length, lost productivity, fuel wastage, and pollution. There is also a non-quantifiable aspect to
the road user cost, that of dissatisfied travelers. Non-quantifiable parameters, as the name
indicate, are those that cannot be readily expressed in numbers. They are categorized under
linguistic terms that are understood by traffic engineers. Maintenance of traffic cost is the cost of
labor and equipment needed for maintaining traffic through and around work zones. It includes
the cost of traffic control devices such as variable message signs, maintenance of alternate
routes, construction and maintenance of temporary pavements, and public dissemination of
information through mass media advertisements.

Ideally, management of work zone requires the minimization of the total cost. However, from
the highway traffic agency’s perspective the road user cost is the most important cost to consider
in a work zone project. All other costs are given lesser priority. The Ohio Department of
Transportation (ODOT), for example, has identified four objectives (in no particular preferential
order) to rate traffic control plans. These are (1) to reduce motorist complaints, (2) to maximize
corridor capacity, (3) to minimize duration of motorist inconvenience, and (4) to maximize
motorist/work safety. These objectives then become the basis for determining the relative

effectiveness of new traffic control plans with respect to previously implemented plans for
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similar work zone conditions. Currently, this procedure is done manually by traffic engineers
based on their previous experiences. This research advocates case-based reasoning as an
effective approach for formalizing and automating this procedure to achieve greater reliability
and efficiency.

CASE-BASED REASONING

Case-based reasoning (CBR) evolved from cognitive science research into an intelligent
problem solving approach that relies on previous experiences in the form of cases of previously
solved similar problems. CBR is a multidisciplinary subject that is viewed with different
perspectives in cognitive science, artificial intelligence, and knowledge engineering (Aha, 1998).
It is loosely based on human reasoning and problem solving which is essentially experiential and
episode based. For example, an experienced traffic engineer can plan a work zone by recalling
the knowledge gained from similar scenarios that he or she had solved previously and avoiding
starting from scratch. Thus, CBR can be thought of as a high level model of human reasoning
and problem solving, which is the view adopted in cognitive science. In artificial intelligence and
knowledge engineering, modeling of human reasoning is not the goal per se but the basis for the
development of computational models for the solution of real world problems. Case-based
reasoning systems thus mimic human reasoning by retrieving and revising cases from memory
(previous experiences) to find solutions for new problems in a given domain.

CBR systems differ from rule-based and model-based systems (Adeli, 1998; Adeli and
Balasubramanyam, 1988; Adeli, 1990a&b) in that they require little low-level domain
knowledge and rely more on general rules for retrieving and adapting saved solutions. A major
drawback of rule-based systems is the difficulty in eliciting knowledge in the form of low-level

rules from experts to be used by an inference engine that chains these rules to arrive at a reliable
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solution. Model-based systems, on the other hand, assume that an accurate mathematical model
for the problem exists. This is often not the case for complex engineering problems such as the
work zone traffic control problem.

The development of a CBR system requires the specification of several procedures. A
schematic description of these procedures is given in Figure 2. These procedures represent
typical operations in a CBR system. As such they may also be thought of as typical CBR system
components. Case-based reasoning is a methodology for solving problems and not a specific
artificial intelligence technique (Watson, 1999). A typical case-based reasoning and problem
solving cycle is shown in Figure 3. A new problem is first represented into a reference case. This
case specifies the problem requirements, which may or may not be complete, and their relative
importance. Using this reference case the CBR system ranks cases in the case base according to
their degree of similarity to the reference case. If the retrieved cases do not provide a satisfactory
solution, which is usually the case, then they are used as the starting solution to be revised and
adapted in order to obtain an improved or satisfactory solution. The retrieval performance of a
CBR system improves as the number of reliable cases in the case base increases. Initially, a
functional CBR system may have only a few cases in the case base; new cases are consequently
added as new problems are solved. This is how learning occurs in a CBR system.

CBR systems have been developed for design, planning, decision support, and diagnosis in
diverse fields such as engineering, medicine, law, and business (Aha, 1998; Lenz et al., 1998;
Maher and Pu, 1997; Leake, 1996). However, the development of a CBR system for work zone

traffic planning and management has not been reported in the literature.
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OBJECTIVES
In this research a case-based reasoning approach is used for the development of a
decision support system for work zone traffic management with the following objectives:

1. To provide traffic engineers with an intelligent decision support tool for design of freeway
(and divided highway) work zone traffic control plans with the goal of reducing the road user
cost (reduced complaints, increased corridor capacity, reduced delays, and improved safety).

2. To develop a case base schema or domain theory to represent the cases based on factors such
as work zone layout, traffic demand, work characteristics, traffic control measures, and
mobility impacts,

3. To develop work zone traffic control plans that are reliable and defendable;

4. To archive previous experiences of work zone traffic control for quick reference, and;

5. To serve as learning and training tool for work zone traffic control under different work zone
scenarios.

SCOPE AND CATEGORIZATION OF PARAMETERS

The scope of applicability of the CBR system for work zone traffic management is
defined and parameters involved are categorized in this section.

Work Zone Type

Several types of work zones are used in practice. The scope of the CBR system is limited
to temporary stationary work zones on divided highways or freeways. Short-duration or mobile
work zones (with duration of less than an hour) are not considered because standard traffic

control plans are often adequate for maintaining traffic flow through such work zones. For a

given work zone a separate traffic control plan is developed for each direction of flow
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independent of flow in the other direction. This simplifies the modeling and understanding of
work zone traffic flow by reducing the number of variables to consider.
Work Zone Layout

The CBR system can consider part-width construction (lane merging), lane shifting, and
crossover layouts. In part-width construction one or more lanes are closed to traffic and traffic is
merged into the remaining open lanes. Such a layout is usually represented by [a, b] (a > b)
where a and b are the number of open lanes before and after the establishment of the work zone,
respectively. In lane shifting layout the number of lanes is not reduced and traffic is shifted
around the work zone on temporary pavements or shoulders. No merging operation occurs in a
lane shifting work zone layout. Crossover layouts are the combination of lane shifting and lane
merging layouts where traffic is merged and shifted across the median unto lane(s) for travel in
the other direction. Thus, the two streams of traffic share the same roadway in close proximity to
each other.
Work Characteristics

It has been found that the capacity of a work zone depends on the type and intensity of
work (Krammes and Lopez, 1994; Dixon et al., 1996). This in turn affects the flow of traffic
through work zones. The proximity of heavy equipment, workers, noise, and dust tends to reduce
mean speeds through work zones; work of higher intensity produces a greater impact than work
of lesser intensity. These factors are considered in the CBR system by qualitative grades of
intensity of work specified as part of the description of the work zone scenario.
Traffic Flow Characteristics

Traffic control plans are developed to facilitate the flow of traffic through and around

work zones. To develop effective plans it is necessary to have the highway segment’s traffic
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flow characteristics such as flow rate, traffic composition, and driver behavior. The traffic
demand that needs to be handled can be specified by the hourly flow rate on the highway
segment prior to the establishment of the work zone. The percentage of trucks gives an
indication of the traffic stream’s composition, which in turn gives an indication of flow
characteristics such as average speed. The familiarity of the drivers with the highway corridor
also has a significant impact. This can be captured in a qualitative manner by categorizing
highways as urban, suburban, or rural. The CBR system can consider all these factors for
analysis of work zone traffic flow. The hourly flow rate is required while the others are optional
if reliable data is available.
Phases of Work

A work zone may go through several phases over its lifetime. Work enters a new phase
whenever any of the parameters defining the work zone scenario changes. Changes in work zone
scenarios are analyzed by creating a new problem description and developing traffic control
plans for each one separately. The CBR system considers the duration of a phase to determine
the time-dependent impact of the work zone scenario.
Traffic Control Measures

It is assumed that the requirements of the Manual on Uniform Traffic Control Devices
(FHWA, 2000a) are followed for all traffic control plans. To improve mobility further, the traffic
agency can take further measures such as providing signed alternate routes, advanced roadside
warning and informative messages, updates on traffic conditions through the mass media, and
posting reduced speed limits in the work zone. These factors are considered in the CBR system
in a qualitative manner. Note that the impact of these measures will depend on traffic flow

characteristics in the given highway such as flow rate and driver behavior.
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Road User Cost

Road user cost is the determining criterion for the selection of a traffic control plan for a
work zone. Quantifying actual cost incurred by road users is difficult. Therefore, indirect
measures of the negative impacts of work zones are usually used. As a measure of motorist
inconvenience, the CBR system uses the quantitative measures of maximum queue length and
delay time that motorists can experience as a result of a given work zone traffic control plan.
Furthermore, the CBR system considers motorists’ complaints, corridor capacity, and safety in a
qualitative manner. These criteria correspond to the four objectives identified by ODOT for the
design of work zone traffic control plans. The CBR system works even when only one of these
values is given for a work zone scenario.

A FOUR-SET CASE MODEL FOR THE WORK ZONE TRAFFIC MANAGEMENT
DOMAIN

A case model or domain theory is a template for collection of information that captures a
problem-solution episode. In general, this information is usually partitioned into two sets: a
problem set and a solution set. The problem set contains information that describes the problem
whose solution is desired. This information uniquely identifies the case in the case base. The
solution set contains information that describes the solution chosen for the problem.

Considering the scope of the CBR system for work zone traffic management a two-set
case model is neither adequate nor appropriate. Each case must contain all the information
needed for case-based reasoning plus the information required for maintaining complete records
of previous experiences for administrative purposes. Furthermore, the outputs of the system must
include information on the effects of the traffic control plan chosen for a given problem

description. For these reasons, in this research we create a four-set case model for work zone
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traffic management consisting of a general information set (G), a problem description set (P), a
solution (or control) description set (S), and an effects set (E). Mathematically, a case is defined
as the union of the four non-overlapping or disjoint sets as follows:

C=GUPUSUE 1)
where U is the set union operator (Figure 4).

The general set contains information that identifies and describes the experience episode for
future reference. Any useful information beyond that needed for the operation of the CBR
system is included in this set so that a complete record of the previous experience episode is
maintained in the case. The problem set contains information that defines the constants of the
work zone traffic control problem. This information is known to the traffic engineer from
construction plans and traffic studies and represents work zone conditions. Information in this set
includes number of lanes, flow rate, duration of work, and intensity of work.

The solution or control set contains information on the work zone layout and traffic control
measures adopted for the mitigation of traffic congestion. This information defines the solution,
or the traffic control plan, for the work zone defined in the problem set. Information in the
solution set includes number of open lanes, work zone layout, and traffic control measures such
as advance motorists’ warning and signed alternate routes. The effects set contains information
about the impacts on the traffic in the work zone. This information forms the criteria for the
selection of one case over another as a solution for a given work zone traffic control problem.

In the case model for the work zone traffic management each case is uniquely identified by
the union of the problem (P) and solution (S) sets. Thus, two cases in the case base can have
identical problem sets; however, their solution sets must differ. This situation may represent two

experience episodes where the work zone traffic control problem is identical but a different
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traffic control plan is adopted for each with possibly different impacts. When querying the
system the traffic engineer can specify as much of the information in the problem and solution
sets. The more information the traffic engineer provides, the more specific will be the cases
retrieved by the CBR system. It should be pointed out that it is not necessary to specify all the
information in the problem set because the CBR approach does not require exact matching for
retrieval.

Equation (1) defines a case as a set of information. The case base can then be defined as the

union of all the cases C, =G, UP. US, UE,

z=Jc, 2)
such that
€, #C = PUS =P US,; Viji#] )

Equation (3) ensures that no two cases in the case base have the same problem and solution sets
and all cases are unique. The case base given by the set Z captures the domain knowledge needed
for solving the problem. The effectiveness of the CBR system increases as the number and
diversity of cases in the case base increases encompassing the entire knowledge domain defined
by its scope of applicability. The CBR system, however, can work even with only a few cases in
the case base.
HIERARCHICAL OBJECT-ORIENTED CASE MODEL

The representation of a case as a union of information sets is most appropriate for the design
of a CBR system. This representation partitions the variables involved in the problem according
to their use in the CBR system: input, output, indexing, retrieval, and adaptation. However, this

partitioning is not appropriate for human comprehension and the user-friendliness of the CBR
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system. Over the years, traffic engineers have developed a body of knowledge for work zone
traffic control that categorizes information in a manner similar to that presented in a previous
section. This categorization is based on key elements or components of the work zone traffic
control problem and is generally more specialized than the four-set categorization defined for the
set representation of the case model. A case model that provides such a level of detail is useful
for the design of an effective user interface for the CBR system. An object-oriented
representation is used to create such a user-interface.

A hierarchical object-oriented case model is developed for the CBR system for work zone
traffic management (Figure 5). A case in the system, represented by a Case object uses four
lower level objects, General, Problem, Solution, and Effects, corresponding to the four sets
defined in the set model of the case. The General object uses three lower level objects,
Description, Time, and Cost that collectively encapsulate general information needed to keep a
complete record of the experience episode. The General object can own additional objects
depending on the information needs of the user.

The Problem object uses three lower level objects, Layout, Traffic Flow Characteristics, and
Work Characteristics. These objects encapsulate the work zone traffic control problem or the
pre-existing geometry and flow conditions for which a traffic control plan is desired. The
Solution object encapsulates the traffic control plan. It uses two lower level objects: Layout and
Traffic Control Measures. The Layout object encapsulates information about the geometric
conditions after the establishment of the work zone while the Traffic Control Measures object
encapsulates the steps taken to alleviate traffic congestion. Work zone traffic control measures
are often divided into those taken inside the work zone and those taken outside the work zone.

The lowest objects Inside Work Zone and Outside Work Zone capture this division of
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information. Traffic control measures taken inside a work zone include imposing speed limits,
widening lanes, and erecting gawk screens, while those taken outside the work zone include
warning motorists in advance and diverting traffic through alternate routes. The Effects object
encapsulates information on the effects of the traffic control plan, which is essentially the road
user cost. The Road User Cost object describes the impact of the traffic control plan on
motorists.

The most specialized objects in the object-oriented case model for work zone traffic
management (the leaf nodes in Figure 5) define the categories readily understood by traffic
engineers. Information in these categories is merged to form the four-set case model used by the
CBR system.

CASE REPRESENTATION

In the case models presented in the previous section a case is defined as a collection of
information objects. The information in the objects is identified by linguistic terms that are
generally understood by humans but are imprecise for information processing. Information or
knowledge representation involves the specification of semantics to information entities that
enables machines to use well-defined operations to process them.

Since cases and objects in the CBR system for work zone traffic management are a collection
of facts rather than rules or functions, an attribute-value scheme is used for information
representation. An attribute-value representation of information is defined by three elements:

e An attribute or field name that identifies the information entity and gives it a meaning that
can be understood by humans;
e A type that specifies the type of the attribute, and;

e A value taken from the domain that specifies the current instantiation of the attribute.
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Common attribute types include choice (free-form text), alphabetic, number, integer, and
positive number. A range can also be specified to further constrain and elucidate the domain
defined by the type. A range specification may be a list of values, a range of values, a hierarchy
of values, or values of a certain unit.

The attribute-value representation 4 of an information entity can be written as a 3-tuple
variable:

A= {name, type, value} 4
Given an attribute-value representation 4 the elements are defined by the functions Name(4) =
name, Type(4) = type, and Value(4) = value = v. Therefore, a case C; in the CBR system for
work zone traffic management can be represented by a collection of attribute-value

representations of all the information entities it contains. This can be written as
C, ={dl 4, 4l,... 4} (5)
where A, is the jth attribute-value representation in case i and N is the total number of attributes

in a case. The name and type elements of a given attribute-value representation i (i = 1, N) are
identical in all cases in the case base; the value elements, however, may be different. The
attribute-value representations of the information entities that constitute a case in the CBR
system for work zone traffic management and corresponding to the General, Problem, Solution,
and Effects sets are defined in Tables 1 to 4. Only two types of values are used for
representation: choice and number.

SIMILARITY MEASURES

The degree of similarity between numeric attribute i of two cases j and £ is defined as

minQv{‘,‘vﬂ)

Similarity(4/, 4") = ,-‘ ‘ k‘
max|v/|,|v;

(6)
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where v/ =value(4;) =0 and || denotes the absolute value. In the CBR system for work zone

traffic management all values of numeric attributes are non-zero and positive. Thus, Eq. (6)
computes the degree of similarity as the ratio of the minimum value to the maximum value,
which ranges from greater than 0 to 1.

The degree of similarity between choice (free-form text) attribute type i of two cases j and k&
is defined by the following rule:

IF (v/ appearsin v) OR (v/ appearsin v/)

THEN Similarity(4/,4')=1  ELSE Similarity(4/,4)=0 (7)
Since the choice type represents free-form text it may consist of numbers, alphabets, and special
characters (such as spaces). Note that the similarity operations are commutative, that is,
Similarity(4/, A") = Similarity(4', 47).
CASE RETRIEVAL

An interaction with a CBR system starts with the formulation of a query that describes a
situation for which a solution is desired. Based on this query the system retrieves cases from the
case base as potential solutions to the problem. The retrieval process is guided by the degree of
similarity (or match) of the query to the cases in the case base. In the CBR system for work zone
traffic management, the query consists of two components: a reference case and a weight vector.
The reference case R is defined as

R={ALA,A,. ,A,| ®)
This equation is similar to Eq. (5). Thus, a reference case has the same collection of attributes-
value representations as other cases in the CBR system. The traffic engineer using the CBR

system inputs values for the attributes in the reference case to describe the work zone scenario.
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The weight vector w; (i = 1, N) attaches an importance to the similarity of each attribute in the
retrieval process. The suitability of the cases in the case base as solutions to the query is
determined by a case or global similarity measure. This is computed as the weighed sum of the
similarities of the respective case and reference case values. The case similarity function for case
i, as compared with a given reference case R is defined as

N - - - i R

ij x Similarity(4}, 4%)

Similarity(C,,R) = = =
Z‘Wj‘

J=1

©9)

Case similarity scores range from 0 to 1 where O indicates no similarity while 1 denotes full
similarity. Based on the case similarity scores the cases in the case base are ranked and presented
to the user. Cases with the largest score represent potential solutions for the problem at hand.
CREATION OF THE CASE BASE

The CBR system for freeway work zone management has been implemented in Induce-It, a
software shell for developing case-based reasoning systems (Induce-It, 2000). Induce-It is based
on the Microsoft Excel spreadsheet software system and relies on its user interface, database, and
programming capabilities to provide an environment for developing and using a CBR system.
Induce-It provides built-in capabilities for case representation, indexing, storage, retrieval, and
adaptation allowing the developer to concentrate on domain information collection and problem
formulation. Cases are represented as a sequence of attribute-value pairs. Induce-It supports
several numeric and textual field types including number, choice (free form text), and user-
specified. A specific region in the spreadsheet is reserved for the case based, where cases appear

in rows while case field values appear in columns.
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Based on the case models presented in the preceding sections a prototype CBR system for
work zone traffic management is developed using Induce-It. The case base of the CBR system
presently includes twenty cases representing common work zone scenarios and their
corresponding traffic control plans. The cases were created from information obtained from the
Ohio Department of Transportation. The information consisted primarily of qualitative data such
as work zone classification, traffic control measures, planning goals, and development
procedures. The quantitative data used in the cases such as the freeway traffic flow rate (in the
absence of the work zone), maximum queue length, and maximum delay time are derived from
human experience of work zone traffic control. The sample case base is sufficient for testing the
prototype system and can be extended easily as new cases become available.

CREATION OF WORK ZONE TRAFFIC CONTROL PLANS USING THE CBR
SYSTEM

The flow chart of steps involved for creation of a suitable work zone traffic control plan
using the proposed CBR system is shown in Figure 6. When a traffic engineer wants to create a
traffic control plan for a given work zone scenario, he starts with some basic fixed information
about the work zone under consideration such as the number of lanes and flow rate. This
information is fed into the CBR system by responding to queries made by the system. This is
done in an iterative manner through a number of interactive sessions until a satisfactory solution
case is obtained or a retrieved case is adapted to obtain a desired solution.

Initially the reference case is created with the minimum information needed to describe
the work zone situation, that is, the number of lanes and the flow rate. This ensures that a wide
spectrum of cases is retrieved by the system. If after evaluating the retrieved cases based on the

case scores no suitable solution is found the reference case is modified in the subsequent
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interactive sessions by adding more information known about the work zone scenario. In
general, the reference case is modified in the sequence shown in the top-left corner of Figure 6
where at each subsequent interactive session the information in the next lower box is added to
the reference case. This procedure ensures that the solution is narrowed down gradually and
minimizes the possibility of missing good solutions by first starting with minimum required
input.

The traffic engineer using the CBR system can use his judgement to assign weights to
various attributes. The value of each weight indicates the significance of the corresponding
attribute. For example, if it is desired that at least two lanes be open then the number of open
lanes attribute should be given a larger weight. Also, a weight can indicate the reliability of a
given value. For example, if the flow rate is not known accurately then a lower weight should be
assigned to it. In general, the weights need not be changed from one interactive session to the
next. However, the CBR system user can modify them for the same reference case to tune the
output of the system.

The retrieved cases are compared according to their case similarity scores computed by
the CBR system. A higher score indicates a closer match to the reference case and the weights
inputted by the user. In addition to this automatic suitability measure the CBR system user can
also evaluate the retrieved cases for their impacts on motorists, the number and type of traffic
control measures, and the maintenance of traffic cost. This evaluation will guide the traffic
engineer to modify the reference case and the associated weights, accepting a case as the desired
solution, or modifying a case to obtain an improved solution.

Case adaptation is attempted after several interactive sessions yield no desired solution

from the case base. Using the retrieved cases as guide the traffic engineer can modify them to
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arrive at a desirable solution. This solution may then be included in the case base for future
perusal.
ILLUSTRATIVE EXAMPLES

In this section the CBR system for work zone traffic management is used to solve three
examples. Figures 7 to 10, considered side-by-side, show the CBR system’s user interface. They
display the attribute-value representation of the information, the reference case, the weights, and
the case similarity scores. Figures 7-10, respectively, show the portion of the case base
corresponding to the General, Problem, Solution, and Effects objects of the case model. Each
case is displayed in a separate row, starting from row 11. The field names and values appear in
columns, starting from column C. The reference case is defined in row 8 and the weights
indicating the relative importance of the values in the reference are specified in row 7. The
suitability of the cases in the case base as potential solutions to the reference case is indicated by
the case score, displayed in column A (Figure 7).
Example 1

This example illustrates the use of the CBR system as a decision-support tool for creation
of a work zone traffic control plan. Given the description of the work zone scenario as defined
by a reference case the traffic engineer uses the CBR system in the manner shown in Figure 6 to
retrieve the most relevant case(s) from the case base. The work zone scenario (reference case) is
described in Table 5. The freeway has three lanes each carrying an average flow of 1400
vehicles per hour. Each phase of construction lasts for 6 hours and it is of medium intensity.
These are the constants of the work zone scenario for which a traffic control plan is to be

developed. In addition to these constants, it is also desired that two lanes be kept open at all
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times, the layout be of merging type, and a signed alternate route be provided to avoid excessive
congestion. This work zone scenario is typical for lane resurfacing projects.

The CBR system is consulted in 3 interactive sessions. The reference case attribute
values and weights chosen for each interactive session and their corresponding case similarity
scores are summarized in Tables 5 and 6, respectively. In the first interactive session, the
reference case is created with the values for the number of lanes and flow rate only, and each is
given equal importance. As seen from Table 6, two cases, Case 12 and Case 17, match exactly
with the reference case with a similarity score of 1. This scenario, however, is too general and
many work zone scenarios have these characteristics but may require different traffic control
plans because of differences in other characteristics.

In the subsequent second interactive session, the values for the work phase duration and
work intensity are added to the reference case. The weights are modified to reflect the greater
relative importance of flow rate and number of lanes in the choice of a traffic control plan. The
phase duration is given more importance than the work intensity because the former has a more
significant impact on the work zone traffic compared with the latter. In general, the longer the
duration of the work zone the greater the extent of the congestion. This congestion, however,
does not increase without bound as motorists tend to change their driving habits and reduce
demand at the work zone site. For this second interactive session Case 17 has the highest score
followed closely by Case 18. As seen from Figures 8 and 9 these two cases have similar work
zone scenarios and traffic control solutions even though they are for different types of
construction work (Case 17 is for culvert work and Case 18 is for pavement marking). However,
the minor differences that exist in the problem and solution descriptions of these two cases result

in a significant difference in the impacts on traffic. One has a queue length of 3.22 km (2 miles)

29



and the other has a queue length of 0.81 km (0.5 miles) (column Z in Figure 10). For this reason
the third interactive session is made more specific by adding the values for number of open
lanes, layout, and alternate route to the reference case (Table 5). These values represent the
desired characteristics of the traffic control plan that the traffic engineer feels can reduce traffic
impacts. Case 1 (presented in row 11 of Figures 7 to 10) has the highest score in this interactive
session (Table 6) and thus provides the best traffic control plan for the given work zone scenario.
Example 2

The CBR system for work zone traffic management can also be used for information
retrieval and engineer training. For this purpose, a reference case is created that contain values
desirable in the retrieved cases. The weights are normally set all equal to 1. Suppose the engineer
wants to study all work zone scenarios that have a merging layout from 4 lanes to 2 lanes. To
retrieve all such cases, a reference case is created with number of lanes set to 4, number of open
lanes set to 2, and layout set to ‘Merging.” The case similarity scores for this example are given
in Table 6. Cases 5 and 6 with a case score of one match the reference case. Note that for such
training information retrieval, only cases with scores of 1 are considered because exact matches
are desired.
Example 3

An advantage of CBR systems for knowledge engineering is that the case base can be
developed incrementally and easily by the end user. A fully functional CBR system may have
only a few cases initially; the user can add more as he or she encounters new problems not found
in the case base. To illustrate this, suppose the user wants to develop a traffic control plan for a 3
to 1 crossover layout in a rural location. Interacting with the system with reference case values of

3 for number of lanes, 1 for number of open lanes, ‘Xover’ for layout, and ‘Rural’ for driver
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behavior produces the case similarity scores shown in the last column of Table 6. No exact
matches are found. Also, the case similarity scores have a narrow spread with no single case
dominating the others. This indicates that a satisfactory solution case does not exist in the case
base. For situations like these, the user can develop a traffic control plan from scratch (aided by
the cases in the case base) and then add the new case to the case base for future perusal.
CONCLUDING REMARKS

Traffic agencies are faced with the challenge of planning, designing, and operating work
zones that maximize safety and minimize motorists’ inconvenience. The most pressing need is to
alleviate excessive congestion by developing work zone traffic control plans that efficiently
handles traffic flow through and around work zones. Presently, no rigorous procedures exist for
the development of work zone traffic control plans. In this research, a case-based reasoning
system is developed as an intelligent decision-support tool to assist traffic engineers in the
development of work zone traffic control plans. The CBR system developed in this research is
the first decision support tool to help traffic engineers create work zone traffic control plans.

The effectiveness of a work zone traffic control plan is measured by the delay
experienced by motorists and/or the length of queue formed on the upstream side. To improve
objectivity and reliability of traffic control plans a multi-paradigm computational model is
currently being developed that maps traffic flow and work zone characteristics to delay time and
queue length. The model will be integrated into the CBR system presented in this article.
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Table 1 Attribute-value representation of information in the General object

Name Description Type Value representation Example
ID Case identification Choice Free-form alphanumeric | OH-5235
Description Brief description of the work zone Choice Free-form alphanumeric | Resurfacing of the
traffic control project southbound lane
Freeway/Direction | Freeway identification number and Choice Designation/ I-71/NB
direction [NB, SB, EB, WB]
Location Geographical location of freeway Choice County, city Franklin, Columbus
Start time Start time of the project Choice Year, month 2000, 02
Duration Duration of the project Number Days 30
CCC Construction/contracting cost Number Thousand dollars 25000
MTC Maintenance of traffic cost Number Thousand dollars 500
Comments Additional comments Choice Free-form alphanumeric | Completed successfully

NB: northbound SB:

Southbound EB: eastbound WB: westbound
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Table 2 Attribute-value representation of information in the Problem object

Name Description Type Value representation Example
No. of lanes Number of open lanes prior to the Number Positive integer 3
creation of the work zone
Flow rate Average flow at work zone site Number Vehicles/hour/lane 1500
Percent trucks Percentage of heavy vehicles or trucks Number Percent 5
in traffic stream
Driver behavior Classification of driver behavior Choice [Urban, Rural] Urban
Phase duration Duration for the work phase Number Hours 4
Work Intensity Classification of work intensity Choice [High, Moderate, Low] Moderate
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Table 3 Attribute-value representation of information in the Solution object

Name Description Type Value representation Example
No. of open lanes | Number of open lanes after the creation | Number Positive integer 2
of the work zone
Layout Work zone layout or configuration Choice [Merge, Shift, Crossover] | Merge
Speed limit Posted speed limit within work zone Number | 1.61xkm/hour (niles/hour) | 45
Lane width Width of lanes within work zone Number 0.305xm (ft) 11
Screens Gawk/glare screens to prevent driver Choice [Yes, No] No
distractions
Advance warning | Advance warning of work zone before Choice [Yes, No] Yes
exits and alternate routes
Real-time info Real-time info on traffic congestion Choice [Yes, No] No
ahead of work zone
Signed alternate Signed alternate routes ahead of work Choice [Yes, No] Yes

route

zone
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Table 4 Attribute-value representation of information in the Effects object

Name Description Type Value representation Example
Queue length Maximum queue length observed Number 1.61xkm (miles) 2

during the work phase
Delay time Maximum delay time experience during | Number Vehicle-hours 2500

the work phase
Complaints Amount of motorists’ complaints Choice [High, Medium, Low] Low
Safety Level of motorist and worker safety Choice [High, Medium, Low] High
Corridor capacity | Reduction in corridor capacity Choice [High, Medium, Low] Medium
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Table 5 Reference case (work zone scenario) and weights for Example 1

Attribute name Value Weights
Interactive Interactive Interactive
session 1 session 2 session 3
No. of lanes 3 1 2 2
Flow rate 1400 1 2 2
vph/lane
Phase duration 6 NS 1.5 1.5
Work intensity Medium NS 1 1
No. of open lanes 2 NS NS 2
Layout Merging NS NS 1.5
Signed alternate route Yes NS NS 1

NS = no value is specified; vph = vehicle per hour
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Table 6 Case scores for the illustrative examples

Case Example 1 Example 2 Example 3
Interactive Interactive Interactive
session 1 session 2 session 3
Case 1 0.992 0.973 0.974 0.991 0.964
Case 2 0.986 0.957 0.897 0.964 0.929
Case 3 0.986 0.957 0.897 0.964 0.929
Case 4 0.984 0.925 0.850 0.982 0.964
Case 5 0.987 0.943 0.945 1.000 0.929
Case 6 0.982 0.942 0.913 1.000 0.964
Case 7 0.992 0.936 0.877 0.973 0.929
Case 8 0.980 0.951 0.907 0.982 0.929
Case 9 0.984 0.958 0.897 0.964 0.929
Case 10 0.984 0.954 0.893 0.964 0.929
Case 11 0.988 0.970 0.862 0.964 0.964
Case 12 1.000 0.975 0.945 0.991 0.929
Case 13 0.986 0.961 0.885 0.964 0.964
Case 14 0.984 0.954 0.893 0.964 0.929
Case 15 0.986 0.957 0.881 0.982 0.929
Case 16 0.980 0.939 0.864 0.982 0.929
Case 17 1.000 0.988 0.957 0.991 0.929
Case 18 0.998 0.983 0.953 0.991 0.929
Case 19 0.985 0.972 0.921 0.988 0.929
Case 20 0.977 0.958 0.882 0.982 0.964
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Work zone costs

Construction/ Road user cost (RUC) Maintenance of traffic
contracting cost (CCC) cost (MTC)
Methodology Delay time Equipment
Scheduling Queue length Personnel
Incentives Fuel cost Temporary structures
Liabilities Lost productivity Detour maintenance

Motorists’ dissatisfaction

Right-of-use

Figure 1 Freeway construction work zone costs and factors affecting them
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Domain information

Problem identification and formulation
System scope definition

Collection of experience episodes
Sources: manuals, books, drawings,
engineers, etc

I=
o

Representation

Specification of semantics and operations
Definition of a data structure

Consideration of problem and system scope
Examples: attribute-value, graph-based,
object-oriented

Indexing and storage

Creation of an archiving system for cases

o Management of storage resources

Technology: flat, relational, or object-
oriented database systems

() »

¢l

Retrieval

Retrieval of potential solution cases
Definition of similarity metric to determine
suitability

Inexact matching

o Ranking of cases using similarity metric

P

Adaptation

]

Modification of retrieved cases to obtain
solution for specific problem
Specification of rules and/or functions for
modification

Figure 2 Elements of case-based reasoning
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New problem

Represent

[ Reference case

Retrieve

Case-based reasoning system

» Store
Learned @ ' Retrieved ll
case ll < » Retrieve cases
Case base » Adapt /
Review Evaluate and reuse

\

[ Modified case }7 Adapt —[ Selected case ]

Pronosed solution)

Process flow

Interaction with CBR system

Case

Problem or solution

LT

Figure 3 Typical CBR system processing cycle

42



ID, description,
freeway/direction, location, start time, duration,
CCC, MTC, comments

No. of lanes, flow rate, percent trucks,
driver behavior, phase duration, work intensity

No. of open lanes, layout, lane width,
speed limit, screens, advance warning,
real-time info, signed alternate route

Queue length, delay time,
complaints, safety, corridor capacity

C=GUPUSUE

Figure 4 Four-set case model for the CBR system for work zone traffic management
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Case

General Problem Solution Effects
. . Traffic Flow Work Road User
Description Time Cost Layout Characteristics| |(Characteristics Layout Cost
ID Start time CCC No. of lanes | | Flow rate Phase No. of open Queue length
Description Duration MTC Percent trucks | duration lanes Delay time
Freeway Driver Work Layout Complaints
/direction behavior intensity Safety
Location Corridor
Comments capacity
Traffic Control
Measures
A K B |
Inside Outside
Object A contains object B Work Zone Work Zone
Speed limit Advance
Lane width warning
Gawk/glare Real-time info
screens Alternate
route

Figure 5 Object-oriented case model for the CBR system for work zone traffic management

44




New work zone scenario

Key in
reference case

No. of lanes; flow rate >

Phase duration, work

intensity | v
No. of open lanes; layout - - —*: r =~ Choose weights
Percent trucks; driver behavior | E
ro v
o Evaluate
Traffic control measures et
| case scores
A I
E Highest
X ranked
Unsatisfactory

case

Satisfactory

- Desired
"] traffic control plan

Adapt

----» Possible modification in subsequent interactive session

Figure 6 Procedure for creation of work zone traffic control plans using the CBR system for work zone traffic
management
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B4 Microsoft Excel - workzone.xls

J|.-§_'| Fle Edit Data Case Database Answers Utities

IDSHAEGRY (I BRC vo-~- @ £ 45 BB 7| Geneva ~10 ~|BzU|=E==88 %,
AQ hd =
A | B C D E F B H [ J | K |

1 |Induce-lt Copyright ®1992-1999 Inductive Solutions, Inc.

2 l

3

4 Types: C C C C (& n n n C

5 Waps:

| 6 Field Names: D Description Freeway | Location | Start time | Duration | CCC MWTC Comments

7 Weights: 1 1 1 1 1 1 1 1 1

8 Reference:

|9

10 Scores Cases

11 0.992 Casel| OH-0142 Resurfacing |-71/MB | Franklin | 1998/02 25 2500 25

12 0 986 Casel| OH-0258 Favement repair -75/MB | Morrow | 1999/06 5 500 15

13 0.986 Cased| OH-0263 Bridge wiork -71/MB | Delaware | 1999/08 20 250 15

14 0.954 Cased | OH-0555% Fesurfacing -7 1/SE | Delaware | 2000/07 35 2000 20

15 0.987 Casge5| OH-0233 | Pavement rehabilitation | I-70/EB | Franklin | 1899/04 g0 4500 a0

16 0.982 Casef| OH-0325 Resurfacing I-70/EB | Franklin | 2000/03 15 1500 20

17 0,992 Case’7| OH-0352 Favermnent marking I-71/ME | Franklin | 2000/04 o 250 o

18 0.980 Cased| OH-0422 Lane addition -70AYWEB 2000/06 75 5500 25

19 0.984 Caszed| OH-0501 IUtility wiork I-71/5B 2000/06 5 35 5

20 0.984| Casel0| OH-0155 Pavement joint work |-71/SB | Delaware | 1998/03 15 25 10

21 0.988| Casel1| OH-0298 Bridge wiork I-80/EB 1998712 15 250 5

22 1.000] Casel12| OH-0333 Pavement marking I-80/EB 1999/04 10 10 s

23 0.986] Casel13| OH-0482 Resurfacing |-77/MB 2000/05 35 125 10

24 0.984| Caseld| OH-0186 Stripping I-77/5B 1898/04 10 55 5

25 0.986| Casel15| OH-0208 | Pavement rehabilitation | I-71/MNB 1899/03 45 325 25

26 0.980| Casel8| OH-0342 Pavement repair |-71/5B 2000/03 25 200 15

27 1.000] Casel7| OH-0329 Cubert work |-77/SB 2000/03 10 80 S

28 0.995| Case18| OH-462 Favement marking |-77/5B 2000705 5 15 3

24 0.98%] Case19| OH-444 IItility wark: -E0AVE |Cuyahogal 2000/04 5 25 5

30 0.977] Case20| OH-0218 Lane addition |-70/EB | Franklin | 18999/08 55 480 20
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Figure 7 CBR system user interface showing reference case, weights, case scores and sample case base for work
zone traffic management corresponding to the General object
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Ed Microsoft Excel - workzone.xls
J@ File Edit Data Case Database Answers Utlities

DeEa8RY smB S5 -
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YR |
L [ m | N | o | P | a |

1

2 |

2

4 n n n o n o

5

6 | Lanes | Flow rate | % trucks |D. behavior|Phase duration| Intensity

T 1 1 1 1 1 1

g 3 1400

9

10

11 3 1800 5 Urban 3 Medium

12 2 1300 3 Rural 4 Medium

13 2 1500 7 Rural 4 Medium

14 2 1600 7 Rural 3 Lowy

15 4 1600 5 Urban B High

16 4 1900 5 Urban 12 Medium

17 3 1800 5 Urban 4 Lowy

18 2 1800 Urban g

19 2 1600 5 Urban g

20 2 1600 Urban 4

21 2 1400 g Urban 5

22 3 1400 Rural 12

23 2 1500 3 Rural g

24 2 1600 5 Rural 4

25 2 1500 4 Rural 4

28 2 1800 Rural 12

27 3 1400 9 Rural g

28 3 1500 Rural g

29 4 1700 3 Urban B

30 2 2000 5 Urban
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Figure 8 Sample case base for work zone traffic management corresponding to the Problem object

47



Ed Microsoft Excel - workzone.xls
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R | s T u | W X Y
1
2 |
3
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5
6 | Open lanes | Layout | Speed limit [Lane width] Screens A waming] BT info A route
7 1 1 1 1 1 1 1 1
g
9
10
11 2 herging Yes Yes Mo Yes
12 1 herging Mo Yes Mo o
13 1 herging Yes Yes Mo o
14 2 Shifting Mo Yes Mo o
15 2 herging 11 Mo Yes Mo Yes
16 2 herging 45 Mo Yes Yes o
17 1 herging 45 Mo Mo o
18 2 Shifting Yes Yes Yes
19 1 herging 35 Yes Mo Mo o
20 1 herging Mo Yes Mo Mo
21 1 Aover Mo Yes Mo Mo
22 2 herging Yes Mo Mo
23 1 Shifting 445 Mo Yes Mo Yes
24 1 herging Mo Yes Mo Mo
25 2 Shifting 445 Mo Yes Mo Mo
26 2 Shifting Mo Yes Mo Mo
27 2 herging Yes Yes Mo Mo
28 2 herging Mo Yes Mo o
29 3 herging Mo Yes Mo o
a0 2 Hover 11 Mo Yes Mo o
21

Figure 9 Sample case base for work zone traffic management corresponding to the Solution object
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Figure 10 Sample case base for work zone traffic management corresponding to the Effects object
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Z | aa | AB | AC | aD |

1
2 |
3
4 n n & C C
5
6 | Queus length | Delay time |Complaints| Safety | C. capacity
7 1 1 1 1 1
g
9
10
11 1 750 Loy High High
12 2 1000 High
13 05
14 05 500
15 05 200 High
16 2 400
17 1 hedium High High
13 05
19 1 Lo High
20 1.5 700
21 3
22 0.5 200 Medium
23 4 High
24 1 High
25 2 500 Medium
26 1 Medium
27 2 High hedium
28 05
29 1 High High
a0 1 Loy High
21



Part 11

Freeway Work Zone Traffic Delay and Cost Optimization Model
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FREEWAY WORK ZONE TRAFFIC DELAY AND COST OPTIMIZATION MODEL
Xiaomo Jiang® and Hojjat Adeli, Fellow, ASCE*

ABSTRACT: A new freeway work zone traffic delay and cost optimization model is presented
in terms of two variables: the length of the work zone segment and the starting time of the work
zone using average hourly traffic data. The total work zone cost defined as the sum of user
delay, accident, and maintenance costs is minimized. Number of lane closures, darkness factor,
and seasonal variation travel demand normally ignored in prior research are included. In order to
find the global optimum solution, a Boltzmann-simulated annealing neural network is developed
to solve the resulting mixed real variable-integer cost optimization problem for short-term work
zones. The new model can be used as an intelligent decision support system a) to find the
optimum work zone segment length and the optimum starting time, b) to study the impact of
various factors such as number of lane closures and darkness, and c) to observe the relation
between the total work zone cost versus the work zone segment length and starting time in a
quantitative and rational way quickly.
INTRODUCTION

Freeway work zones result in congestion and traffic delays leading to increased driver
frustration, increased traffic accident, and increased road user delay cost. The traffic delay costs
to users have been mathematically modeled and evaluated based on simplifying assumptions.

Since the freeway work zone segment length has a significant impact on both the agency and
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State University.
* Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 470

Hitchcock Hall, 2070 Neil Ave., Columubus, OH, 43210, USA.
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user costs, efforts have been made to find the optimum freeway work zone segment length so as
to minimize the costs to users and freeway agencies.

McCoy and Mennenga (1998) developed a simple model to find the optimum work zone
segment length for minimum work zone costs in a rural four-lane freeway with one lane closure.
Based on the average daily traffic (ADT), it takes into account the construction cost, user delay
cost, vehicle operating cost, and accident cost. A Microsoft Excel-based model has recently been
developed for predicting the work zone delay, named QuickZone Delay Estimation Program
(MITRETEK, 2000) based on the deterministic queuing model for each network link in the work
zone. The hourly estimation in QuickZone takes into account expected time-of-day utilization
and seasonal variation in travel demand. QuickZone, however, does not have any optimization
capability for finding the optimum work zone segment length or starting time of the project.

Recently, Chien and Schonfeld (2001) presented a simplified and useful model for
estimating the delay cost using the average daily traffic (ADT) and finding the optimum work
zone segment length in a four-lane freeway with one lane closure. They assume that if the work
zone capacity is more than the ADT, no queue is formed. However, since the traffic flow varies
within a day, this assumption does not hold at least during part of the day. Furthermore, the
starting time of the work zone in a day (work during the day versus evening) and seasonal
demand have significant effects on user delays and work zone costs. Chien and Schonfeld
(2001), however, have tackled a problem of great practical significance in managing freeway
work zones, which is to find the optimum work zone segment length.

A NEW TRAFFIC DELAY AND COST OPTIMIZATION MODEL FOR FREEWAY
WORK ZONES

Assumptions
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In this article, a new macroscopic computational model is presented for estimating traffic

delays in freeway work zones based on the flow theory using neural network and optimization

techniques. The model uses hourly traffic flow and takes into account the following factors: 1)

number of lane closures (%)), 2) length of the work zone segment (/), 3) anticipated hourly traffic

flow of the freeway approaching the work zone, 4) starting time of the work zone (time of the

day in hour), 5) darkness, 6) seasonal variation in travel demand, and 7) the duration of the work

zone in hours (D).

1)

2)

3)

4)

5)

The following assumptions are made to formulate the problem:

All the vehicles travel at the same speed of ¥, through the work zone, and at the same speed
of V, approaching and leaving the work zone.

The road user delay cost is represented by an average cost per vehicle hour c,, expressed in
dollars per vehicle hour.

The anticipated hourly traffic flow approaching the work zone in vehicle per hour (vph) at
time t of day (measured in hours), f,, is known. An intersection close to work zone or a
residential street in an urban area creates traffic diversion and affects the anticipated hourly
traffic flow approaching the work zone. The model includes the effect of an intersection
indirectly as long as the anticipated hourly traffic flow includes this effect as a percentage of
diverted traffic.

The freeway work zone capacity, c,, is assumed to be constant for any given number of lane

w

closures. Also, the freeway capacity outside the work zone, c¢,, is assumed to be constant.

The agency or maintenance cost (C,,) for maintaining a work zone segment is a linear

function of the work zone segment length (/) and is expressed in the following form:
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6)

Cy =c+(Nc,)l 1)

where ¢; represents the fixed cost independent of work zone segment length and ¢, represents
the average additional maintenance cost per work zone kilometer per lane.
The time period required to complete the maintenance for the work zone is a linear function
of the work zone segment length and is expressed in the following form:

D=d, +(N,d,)] (2)
where d; represents the setup time independent of work zone segment length and

represents the additional maintenance time per work zone kilometer per lane.

The cost and time linearity assumptions 5 and 6 are also made by Chien and Schonfeld
(2001). However, in this work we have included an additional parameter, that is, the number

of lane closures in the formulations.
Freeway Work Zone Traffic Delay Model

The deterministic delay method is used to estimate the number of vehicles per hour in a
queue. The user delay time consists of the queue delay time upstream of the work zone (t;)

and the moving delay time through the work zone (tn). The total user delay time, ¢,, during

the duration, D, of the construction at the work zone is

t,=t,+t, (3)
It should be pointed out that these quantities are computed for all the road users and therefore
expressed in terms of vehicle hours.

Within a specific time period Az (in hours), if the anticipated hourly traffic flow

approaching the work zone («, f,,) exceeds the work zone capacity (c, ), a queue forms.
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That is, a queue forms when «. f,, >c,, where «_ is the seasonal demand factor used to

adjust the short-term traffic flow for seasonal variations. For example, ODOT specifies a
value for each day of the week and for every month of the year depending on a classification
of highways. For annual average daily traffic (AADT) used for the whole year, the seasonal
demand factor is equal to one. For various days of different months, ODOT specifies a value

in the range of 0.76 and 1.72 (http://www.dot.state.oh.us/techservsite). When the real-time

traffic flow measurement is used, «, =1.0. The number of vehicles in a queue within the

specific period At¢, Q,,, is equal to

QA[ = asf a Gy (4)

and the cumulative number of vehicles T

t+At

in a queue at time ¢+ At is

t+At

T = ZQA: )

where ¢, represents the starting time at the work zone in hours ranging from 1 to 24.

When «,f, <c,, the queue delay time is zero and the existing queue starts to

w!

disappear. In that case
Oy =0 (6)
and

T,

t+At

=max{7, —s, 0} @)
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where s represents the queue reduction. This parameter is formulated differently depending
on whether the work zone has a long duration (more than one day) or a short duration (less

than one day).

When the work zone duration is long term (defined as work zones with duration of

more than one day), the queue reduction factor is (Figure 1a)
s=c,—a.fy (8)
When the work zone duration is short-term (Figure 1b), the queue reduction factor is
s=cy—a,f, )
where ¢, represents the freeway capacity in the absence of any work zone.

The queue delay time, ¢_, over the work zone duration, D, is obtained as

t;+D-1 T

(=3 (%mj (10)

t=t;

The shaded area in Figures 1(a) and (b) represents the value of the function inside the
parentheses in Eq. (10). The total area under all queue waves during the work zone duration
represents the work zone queue delay, t,. A queue wave is the hill-shape curve representing
the variation of the cumulative number of queuing vehicles over time from the start of the
formation of one queue to the total dissipation of that queue. For example, there are two
queue waves in Figure 1(a) and only one in Figure 1(b). The queue reduction factor over the

time period At, s, is also shown in Figures 1(a) and 1(b).

The moving delay time, ¢, , is expressed as a function of the difference between the

m!

travel times on a freeway with and without a work zone. Within a given period Az, if the
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anticipated hourly traffic flow approaching the work zone exceeds the work zone capacity

(a,f, >c,), the maximum traffic flow through the work zone is ¢,. Then, the moving

delay time, At, , over the given period, A¢, is expressed as

At, = [L - chwm (11)
Vw Va

When the anticipated hourly traffic flow approaching the work zone is less than the work

zone capacity («, f,, <c, ), the moving delay time Az, , over the given period Az, becomes

v

At, = (L - VLJ(% fa)A (12)
Thus, the total moving delay time during the work zone duration is
t;+D-1
6= AL (13)

where Az, is substituted from Eq. (11) or (12) depending on whether within any given time

period, the anticipated hourly traffic flow approaching the work zone exceeds the work zone

capacity or not.

Freeway Work Zone Cost Optimization Model

The freeway work zone cost is defined as the sum of three components: the user delay cost

(C,), the accident cost (C,), and the work zone maintenance cost including the setup and removal

cost (Cy).

Cw = Cd + Ca + Cm (14)

All these three components are defined in dollars per length (kilometer) of the work zone.
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The user delay cost per work zone kilometer per lane is the total user delay time, ¢,,

multiplied by the average cost per vehicle hour c,, divided by the work zone segment length /

and the number of lane closures in the work zone, N, :

C,= (15)

The traffic accidents considered in this study are those occurring in the work zone and

queue areas. The accident cost C, per work zone kilometer per lane incurred by the traffic flow
passing through the work zone is determined from the number of accidents, »,, per 100 million
vehicle hour, multiplied by the product of the increased delay, 7,, and the average cost per
accident, c,, divided by the work zone segment length and the number of lane closures:

_a,n.cct,

n a -~ a

- 16
“ 10°IN, 10)

In this equation, «,, is a factor to take into account the effect of darkness and working at

night. Increasingly more work zones are performed at night to ameliorate the impact of
construction on road users and reduce the traffic disruptions. On the other hand, the evening
construction results in reduced worker productivity at work zone, increased construction
costs for utilities and labor fee, and increased risk of traffic accidents. A darkness factor of
greater than one («, >1.0) is used for construction work at night. Its value is determined
based on the previous experience as well as the management plan in the practical application.
The accident cost used in our formulation and represented by Eq. (16) includes two new
factors not considered in previous research (McCoy and Mennega, 1998; Chien and

Schonfeld, 2001): number of lane closures and the darkness factor.
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The maintenance cost in the work zone includes the setup and removal cost for the work
zone and the average construction cost per work zone kilometer per lane, as noted in Eg. (1). The
average maintenance cost C, per work zone kilometer per lane is the total maintenance cost,
C,, (defined by Eqg. 1), divided by the work zone segment length and the number of lane

closures modified by the darkness factor «,,:

C =—ige, (17)

Substituting Egs. (15) to (17) into Eq. (14) yields the work zone cost function C,, per work zone

kilometer per lane.
Thus, the freeway work zone cost optimization model is expressed as follows:
Minimize

1 an,.c, +10%,,
c =C,+C +C =—> (a,c, +—= "t )+a,c 18
w d a m lNl(nl 108 ) n-2 ( )

Subject to the following constraints:
t, 20 (19)
l 2 lmin (20)

where ¢, is the total user delay time as expressed by
t,=t, +t,

t;+D-1 T +T t;+D-1 t;+D-1 T +T
=y [—“A’ Atj ZA: > (—2 HALAL+ A j (21)

t=t; t=t,
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and /;, is the minimum work zone segment length based on practical considerations. For

example, a minimum work zone segment length of 0.1 km is chosen in the examples

presented in this article.

There are two variables in the optimization formulation presented in this section: the work
zone segment length (7), a real variable, and the starting time of the work zone in hours (z), an
integer variable. The computational model presented in this section is general and can be used
for both short-term work zone (with duration of less than one day) and long-term work zone
(with duration of more than one day). In the following sections, we present an approach for
solving this mixed real variable-integer nonlinear programming problem for short-term work
Zones.

WORK ZONE COST FUNCTION FOR SHOT-TERM WORK ZONES
For practical reasons, the work zone segment length is chosen in pre-selected increment of

S kilometers (or miles), for example, £ = 0.05 km or 0.1 km. The starting time of a short-term

work zone can take an integer value between 1 and 24 for the twenty-four hours of a day. The
maximum work zone segment length for short-term work zones is obtained from Eq. (2) by using
the maximum work zone duration of 24 hours for the work duration, D:

l:1

max

(24-d,) (26)

2"

If the work zone segment length increment of g = 0.05 km is chosen, the number of possible

work zone segment lengths becomes

n= Zmax B Zmin _ lmax B lmin (27)

B 0.05
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In the freeway work zone cost formulation presented in this article, the starting time of

work zone, ¢,, affects the total work zone cost. The user delays in the work zone vary depending

on the starting time of the work zone. For short term work zones, for any given work zone
segment length /;, there are 24 possible starting times for the construction work, corresponding to
the 24 hours in a day, and the total work zone cost is obtained by substituting Eq. (21) into Eq.

(18):

8 t;+D-1
C = _I;L\/' |:anc1 1+l +10%,, (T’ Lo At+At, H +a,c,
itV

" 10° pury 2
+10%c,, "&N T +T
— annacag Con Z t t+At Af + Atm + a,c, + a,C (28)
10°I.N, 2 I;N,

BOLTZMANN NEURAL NETWORK WITH SIMULATED ANNEALING FOR WORK
ZONE COST OPTIMIZATION

A combined Boltzmann neural network-simulated annealing algorithm is developed to
solve the mixed real variable-integer cost optimization problem for short-term work zones. The
goal is to find the global optimum solution for the work zone segment length and starting time.

Simulated Annealing

Most optimization algorithms for solution of nonlinear programming problems with
many hills and valleys encounter the so-called hill-climbing problem where the solution can get
stuck in a local optimum, say one of the valleys in the minimization problem. A number of
approaches have been proposed in the recent literature to overcome this problem and find the
true global optimum solution such as genetic algorithms (Adeli and Cheng, 1993; Adeli and

Hung, 1995) and simulated annealing (Kirkpatrick et al. 1983). Simulated annealing is inspired
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by the metallurgical process of annealing where a metal is heated to near melting point and then
cooled slowly and intermittently until an equilibrium is achieved for an optimum material
microstructure with desirable structural properties such as ductility. The material microstructure
may be changed easily and rapidly at high temperatures with high kinetic energy. But, sudden
cooling of the material can result in undesirable brittleness. In contrast, a gradual and carefully
controlled cooling operation can result in a material with optimum microstructure. This process
may be explained as removing local pockets of stress energy to allow the metal to escape from
local elevated energy minima and reach a global energy minimum (Aleksander and Morton,
1991).

Metaphorically, simulated annealing for solution of nonlinear programming problems
with multiple local optima can be considered as maximizing strength and minimizing brittleness
by minimizing an energy functional (Mehrotra et al., 1997). As such, this approach requires the
definition of an energy function and a temperature parameter to be lowered gradually during the
optimization iterations. The selection of a candidate solution in successive iterations and the
corresponding modification of the temperature parameter is guided by a probabilistic
distribution. This process helps the solution to jump from one valley to the next valley in search
of the true global optimum. Thus, a typical simulated annealing algorithm is implemented in two
nested loops, an outer loop where the temperature parameter is reduced and an inner loop where
direction of iterations is determined. In every iteration, solutions in the vicinity of the current
solution are explored. Solutions that decrease the energy functional are maintained for
additional moves. Further, solutions that increase the energy function with an acceptable
selection probability, expressed as a function of the temperature parameter and the change in the

energy from the previous iteration, are also maintained for additional move in search of the
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global optimum. The probability of acceptance is chosen to be larger with a larger value of the
temperature parameter, similar to the metallurgical annealing process where the material
microstructure is modified more easily at higher temperatures.
Boltzmann Neural Network

Artificial neural network algorithms are known to be effective for solution of
complicated pattern recognition problems (Adeli and Hung, 1995; Adeli, 2001). They have also
been used for solution of optimization problems. Examples include the Hopfield neural network
(Hagan, et al., 1996; Mehrotra, et al., 1997; and Pham and Karaboga, 2000) and the neural
dynamics model of Adeli and Park (Adeli and Park, 1998; Adeli and Karim, 2001)

A Hopfield neural network is known to converge to a local optimum. Thus suffering from
the same hill-climbing problem stated earlier. To overcome this shortcoming, Ackley et al.
(1985) introduced the so-called Boltzmann machine by introducing noise in the network
trajectory to avoid the problem of entrapment in a local optimum. The concept of noise in the
Boltzmann machine is analogous to the concept of temperature in the simulated annealing
algorithm. The magnitude of the noise is reduced steadily based on a probability distribution till
the network converges to the global optimum. A second distinction between the Hopfield
network and the Boltzmann machine is that the former has no hidden layer but the latter does.
Architecture of Boltzmann Neural Network with Simulated Annealing for Work Zone Cost
Optimization

The architecture of the Boltzmann-simulated annealing neural network for solving the
short-term freeway work zone cost optimization problem is presented in Figure 2. The network
consists of three layers: input layer, hidden layer, and output layer. Unlike the conventional

Botlzmann machine, the neural network created in this research has a set of storage nodes in
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additional to the standard Boltzmann network nodes. The inputs to the neural network are the
hourly traffic flows approaching the work zone (fi, i =1,24). These values are used to calculate
the 24 vectors of work zone information C,(i,n) (i=1,24) assigned to the storage nodes. Each
vector contains the values for nine quantities: the work zone segment length (J), starting time (z,),
queue delay time (z,), moving delay time (z,), user delay time (z,), user delay cost (C,), accident
cost (C,), maintenance cost (C,), and the total work zone cost (C,). The Boltzmann network
nodes in the input layer are all assigned a value of one (x; =1, i=1,24).

The number of nodes in the hidden layer is equal to the number of possible work zone
segment lengths, n, as determined by Eq. (27). Similar to the input layer, the local minimum
work zone information for any given work zone segment length is stored in the vector Cn(y) (j=
1, n), which contains the values for the same nine quantities mentioned in the previous
paragraph. The Boltzmann network nodes in the hidden layer are randomly assigned values of
xj=-1or+1(j=1,n).

For training the Boltzmann network, we define an energy function in the following form:

E= ZWiijl.xj (29)
j=1

where w, represents the weight of the link connecting the Boltzmann input node i to node j in

the hidden layer. It is defined as

(C.);; . .
W, = ——t i=1,24;j=1,n (30)

U 2 ,
z (Cw ) ij
i-1

in which (C,)); represents the total work zone cost at the input node i corresponding to the

jth work zone segment length.
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To find the global optimal solution for the work zone cost optimization problem we need to
find the global minimum solution for the energy function defined by Eq. (29). This is achieved
by using the simulated annealing in two phases (Figure 2). In the first phase, simulated annealing
is applied between the input layer and the hidden layer yielding the local minimum total work
zone cost solutions corresponding to various work zone segment lengths. In the second phase,
simulated annealing is used between the hidden layer and the output layer to obtain the global
optimum solution for the work zone cost optimization problem.

The flow diagram for the Boltzmann-simulated annealing algorithm for the work zone cost
optimization problem is shown in Figure 3. In phase one of the simulated annealing, the energy
function (Eqg. 29) is initially evaluated by summing over all hidden nodes but using the values of
the weights associated with only one randomly selected input, i, for any hidden node, ;. One
input node x; and one hidden node x; are selected randomly and the value of the selected hidden

node x; is changed from -1 to 1 or from 1 to -1. Because other hidden nodes j (j # k£ ) are not

selected for updating the energy function at this step, the resulting change of energy becomes

AE = wy o x,x, (0 +1) = w; x,x, (1)
=w, X (E+1) —w,  x, (1) (31)

where x, (t+1) and x, (¢) represent the values of the selected K™ hidden node in the new and
last steps, respectively, and x, is the selected ™ input node. If the energy change, AE, is

negative the change is accepted and the weight of the link connecting the selected 4"

Boltzmann hidden node to the node in the output layer, w,, is set to the weight of the link

connecting the selected input node i to the selected hidden node k&, wi:
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Wi = Wi (32)

P=———z; (33)

where parameter, 7, is the so-called temperature parameter in the simulated annealing algorithm.
The initial temperature is set to some high value (e.g, 100 in this research) and is reduced in
subsequent iterations by certain percentage (e.g., 1% in this research). A local optimum work
zone cost solution is found when the system reaches an equilibrium point at a temperature =

when the probability p approaches one. This solution is represented as the weights between of

the links connecting the nodes in hidden layer and the output node.

In phase two of the simulated annealing, a similar process is performed between the
hidden layer and the output layer yielding the global minimum work zone cost solution with the
corresponding global optimum work zone segment length and starting time.

APPLICATION AND EXAMPLES
Example One: Four-lane Freeway with One Lane Closure

The data for this example, summarized in Table 1, are chosen to be the same as those of
Chien and Schonfeld (2001) for the sake of comparison, with the addition of values for darkness
and seasonal demand factors. This example is a four-lane freeway with one-lane closure. Chien
and Schonfeld (2001) use the average daily traffic only. In this work, the anticipated hourly
traffic flow approaching the work zone is used.

Example 1A (ADT=1000 vph)

The anticipated hourly traffic flows approaching the work zone for this example for the

duration of one day are given in Table 2, with an average daily traffic (ADT) of 1000 vph, the
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same value used in Chien and Schnofeld (2001). The hourly and cumulative numbers of vehicles
in a queue calculated by the new computational model are presented in Table 2. The cumulative
number of queuing vehicles as a function of the time of the day is also displayed graphically in
Figure 4. Two queue waves are observed in this figure.

Chien and Schnofeld (2001) report an optimum work zone segment length of /=1.4 km
(corresponding to minimum work zone cost) and duration of D=10.4 hours for the example data
presented in Table 1 with the ADT of 1000 vph. Using the same workzone length of 1.4 km and
duration of 10.4 hours, the traffic delay estimation model presented in this article yields a

maximum queue delay time (z_) of 18,624 vehicle-hours and maximum moving delay time (z,,)

of 149 vehicle-hours when the maintenance work is started at 8 A.M. In contrast, when the
maintenance work is started at hour 19 (7 P.M.) in the evening, the queue delay is zero and the
moving delay time is reduced to 56 vehicle-hours. Chien and Schonfeld (2001) report a queue
delay time of O and moving delay time of 141.5 vehicle-hours (Table 3). The current
investigation indicates that the starting time of the work zone affects the user delay time
significantly. This factor is absent in the recently published work zone delay estimate models but
is taken into account in the new model.

Assuming that the work zone duration is less than one day (short-term work zone), a

maximum work zone segment length of L =3.65 km is obtained from Eq. (26). The

maximum number of possible work zone segment lengths from Eq. (27) is then n=72. A

darkness factor of o, = 2.0 is assumed for all the examples in this article. Figure 5 shows the

variation of the work zone costs versus the work zone segment length. It should be pointed out
that the data for each given work zone segment length corresponds to a local minimum solution

for that particular work zone segment length for various starting times. The optimum work zone
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segment length corresponding to the minimum total work zone cost is the global optimum
solution. In this example, it is found that the maintenance cost is a significant factor in the total
work zone cost. The global optimum starting time is found to be 8 A.M. and the global optimum
work zone segment length is 0.35 km resulting in the global minimum total work zone cost of
83147.55 $/km. Figure 6 shows the variation of work zone costs versus the starting time of the
day for the global optimum solution. This figure demonstrates that selection of the starting time
using the same work zone segment length of 0.35 km has a significant impact on the total work
zone cost.

The work zone traffic delay estimate model presented in this article also allows you to
choose the starting time of the work zone. This is a desirable feature as the optimum starting
time provided by the model may not be acceptable for non-economical reasons. For instance,
assume a starting time of 9 A.M. is selected for this example. Figure 7 shows the variation of
work zone costs versus the work zone segment length. The model yields an optimum work zone
segment length of 0.20 km resulting in minimum total construction cost of 84941.92 $/km. This
cost is about 2% higher than the global optimum solution presented in Figure 5. The new model
can be used as an intelligent decision support system to study the relation between the total work
zone cost versus the work zone segment length and starting time quickly.

Example 1B (ADT=2000 vph)

This example uses the same data as example 1A with the exception of ADT= 2000 vph.
The anticipated hourly traffic flows approaching the work zone in a day with ADT of 2000 vph
as well as the queue delay results obtained from the new computational model are presented in

Table 2.
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Initially, for the sake of comparison, we use the same work zone segment length of 0.34 km
and duration of 4 hours given in Chien and Schnofeld (2001). The new work zone traffic delay

estimation model yields a maximum queue delay time ¢, of 38,579 vehicle-hours and maximum

moving delay time ¢, of 35 vehicle-hours with a staring time of 3 A.M. However, if the

maintenance work is performed at midnight the model yields the minimum queue delay of zero

and the minimum moving delay time ¢, of 4 vehicle-hours. Chien and Schnofeld (2001) report

queue delay of 44804 vehicle-hours and moving delay of 66.1 vehicle hours (Table 3) without
considering the effects of the starting time of the work zone.

The new model yields a global optimum value of 1.05 km for the work zone segment
length and a global optimum starting time of 21 o’clock (9 P.M.) resulting in a global minimum
work zone cost of 162310.22 $/km for a work duration of 8 hours.

Example Two: Six-lane Freeway

This example is created in this research to demonstrate the capability of the new work zone
traffic delay estimate model to account for the number of lane closures. A six-lane freeway with
three lanes in every direction is considered. Data in Table 1 are used in this example with the
exception of values for freeway capacity in the absence of work zone (a value of 5400 vph is
used in this example), work zone capacity, number of open lanes, and number of lane closures.
The anticipated hourly traffic flows approaching the work zone in a day are presented in Table 4.

Example 2A - One-lane Closure

This example has only one lane closure. The work zone capacity is assumed to be 2980
vph per Highway Capacity Manual (HCM, 1985). The hourly and cumulative numbers of
vehicles in a queue calculated by the new computational model are presented in Table 4. Similar

to example 1, in this example, the maintenance cost is a significant factor in the total work zone
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cost. The global optimum work zone segment length is 1.05 km and the global optimum starting
time is 7 A.M. resulting in the global minimum total work zone cost of 85107.26 $/km and
duration of 8 hours. For one-lane closure, having the work done during the day is more
economical than having it done during the night.

Example 2B - Two-lane Closures

This example has two lane closures. The work zone capacity is assumed to be 1170 vph per
Highway Capacity Manual (HCM, 1985). The hourly and cumulative numbers of vehicles in a
queue calculated by the new computational model are presented in Table 4. Figure 8 shows the
variation of the work zone costs versus the work zone segment length. The global optimum work
zone segment length is 0.55 km and the global optimum starting time is 3 A.M. resulting in a
global minimum total work zone cost of 15900.70 $/km and duration of 5 hours. In this example,
the user delay cost becomes the dominant work zone cost for work zone segment lengths of
greater than about 2.7 km. For two-lane closure, having the work done during the night is more
economical than having it done during the day. But, compared with example 2A the cost is
increased substantially because the darkness increases the maintenance cost resulting in a
considerable increase in the total work zone cost.

By comparing the results obtained for examples 2A and 2B, it is concluded that having the
work done during the day with starting time of 7 A.M. with one lane closure is the most
economical solution for the work zone project at hand.

Example Three: Four-Lane Highway with One-lane Closure in North Carolina

In this example, actual traffic data measured in a work zone in a four-lane highway in the

state of North Carolina with one lane closure are used. The hourly traffic flows approaching a

work zone on route NC 147, 0.1 miles south of SR 1171, measured by North Carolina
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Department of Transportation in a day (August 28, 2000) are presented in Table 5. Data in Table
1 are also used in this example except for values of freeway capacity in the absence of work zone
(a value of 2400 vph is used) and work zone capacity (a value of 1000 vph is used). The hourly
and cumulative numbers of vehicles in a queue calculated by the new computational model are
also presented in Table 5. The new model yields a global optimum value of 0.20 km for the work
zone segment length and a global optimum starting time of 7 resulting in a global minimum work
zone cost of 87954.99 $/km for a work duration of 3 hours. Figure 9 shows the variation of work
zone costs versus the starting time of the day.
CONCLUSION AND FINAL COMMENTS

A new freeway work zone traffic delay estimate and total work zone cost optimization
model is presented in this article. In contrast to the previous published works that are based on
the average daily traffic flow the new model is based on average hourly traffic flow. A total
work zone cost function is defined as the sum of the user delay, accident, and maintenance costs.
It takes into account the number of lane closures, the darkness factor, and the seasonal demand
factor. The work zone traffic delay and cost optimization model is applicable for both short-term
(less than one day) and long-term (more than day) work zones. The model yields the global
optimum values for the work zone segment length and the starting time of the work zone. A
Boltzmann-simulated annealing neural network model is developed to solve the resulting mixed
real variable-integer short-term work zone cost optimization problem.

Numerical examples presented demonstrate that the starting time of the work zone has a
significant impact on queue formation and total work zone cost. Thus, the proposed model based
on the average hourly traffic flow allows the work zone traffic engineer to prepare a more

effective traffic control plan for a given work zone based on detailed and accurate quantitative
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information in a systematic manner resulting in substantial cost savings and minimum disruption
of traffic for the travelling public. Using the proposed model, the work zone traffic engineer will
be able to find the answer to important what-if questions, such as one-lane closure versus two-
lane closure or selection of the starting time of the day systematically and quickly. The
examples presented show how the transportation work zone engineer can observe the impact of
the number of lane closures and the darkness. The model also incorporates a seasonal demand
factor. That means the work zone engineer can use the model to find out the impact of seasonal
demand on the user delay and total work zone costs. The model is currently being extended to
find the optimum work zone segment length and starting time for long-term work zones. Further
extension would be to include the impact of detours in the model.
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Table 1 Input data for example 1 (chosen to be the same as those of Chien and Schnofeld,
2001, for the sake of comparison with the addition of values for darkness and seasonal

demand factors)

Variable Description Values
Co Freeway capacity in the absence of the work zone 2,600 vph
c, Work zone capacity 1,200 vph
v, Average approaching speed 88.00 km/h
V., Average work zone speed 48.00 km/h
n, Number of accidents per 100 million vehicle hour 40 acc/100mvh
c, Average accident cost 142,000 $/acc
Cop Average vehicle delay cost per hour 12.00 $/vph
) Fixed set up cost 1,000 $/zone
c, Average maintenance cost per work zone kilometer per lane | 80,000 $/km
d, Fixed setup time 2 h/zone
d, Average maintenance time per kilometer 6 h/km
N, Number of lane closures in the work zone 1
N, Number of open lanes in the work zone 1
a, Darkness factor (Cost increase ratio for work at night) 2.0
a Seasonal demand factor 1.0

©
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Table 2 Queue delay results obtained from the new computational model for example 1 (Four-

lane freeway with one lane closure)

_ Anticipated traffic flow | Number of vehicles in | Cumulative number of
Time | approaching the work | the queue per hour, O | vehicles in the queue per
(Hour zone, f; (vph) (vph) hour, T (vph)

of day) Example 1A|Example 1B|Example 1A|Example 1B|Example 1A|Example 1B

1 180 360 0 0 0 0

2 50 100 0 0 0 0

3 117 234 0 0 0 0

4 420 840 0 0 0 0

5 833 1681 0 481 0 481

6 1145 2290 0 1090 0 1571

7 2161 4322 961 3122 961 4693

8 821 1642 0 442 582 5135

9 1020 2075 0 875 402 6010

10 930 1660 0 460 132 6470

11 910 1831 0 631 0 7101

12 1320 2651 120 1451 120 8552

13 1620 3242 420 2042 540 10594

14 1728 3456 528 2256 1068 12850

15 2154 4325 954 3125 2022 15975

16 2420 4840 1220 3640 3242 19615

17 2021 4142 821 2942 4063 22557

18 1460 2920 260 1720 4323 24277

19 850 1700 0 500 3973 24777

20 700 1425 0 225 3473 25002

21 400 800 0 0 2673 24602

22 280 560 0 0 1753 23962

23 240 480 0 0 793 23242

24 210 420 0 0 0 22462

Table 3 Traffic delay estimate results (unit: vehicle-hours)
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Example 1A

Example 1B

ADT=1000 vph, I=1.4 km

ADT=2000 vph, /=0.34 km

Chien & New model New model
Work zone Chien &
traffic delay Schonfeld . Schonfeld .
model Max Min (2001) Max Min
(2001)
Queue delay 0 18624 0 44804 38579 0
Moving delay 1415 149 56 66.1 35 4
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Table 4 Queue delay results obtained from the new computational model for
Example 2 (Six-lane freeway with one-lane closure or two-lane closures)

Anticipated |Number of vehicles in the| Cumulative number of
Time traffic flow | queue per hour, Q (vph) |vehicles in the queue per
(Hour of{approaching the hour, T (vph)
day) | work zone, f; |Example 2A [Example 2B|Example 2A(Example 2B
(vph) (one-lane | (two-lane | (one-lane | (two-lane
closure) closures) | closure) closures)
1 682 0 0 0 0
2 431 0 0 0 0
3 304 0 0 0 0
4 323 0 0 0 0
5 312 0 0 0 0
6 580 0 0 0 0
7 1934 0 764 0 764
8 2986 6 1816 6 2580
9 2666 0 1496 0 4076
10 3067 87 1897 87 5973
11 2681 0 1511 0 7484
12 3035 55 1865 55 9349
13 2887 0 1717 0 11066
14 2761 0 1591 0 12657
15 3133 153 1963 153 14620
16 3503 523 2333 676 16953
17 3586 606 2416 1282 19369
18 4027 1047 2857 2329 22226
19 2609 0 1439 1958 23665
20 1895 0 725 873 24390
21 1591 0 421 0 24811
22 1492 0 322 0 25133
23 1423 0 253 0 25386
24 833 0 0 0 25049
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Table 5 Queue delay results obtained from the new computational model for

Example 3
jime | Anticipated traffic Number of vehicles in| Cumulative number of
(Hour of| flow approaching h h mutative number o
day) | the work zone, f; |1 dueue perhour, O ve q
(vph) per hour, T (vph)
(vph)
1 137 0 5
2 76 0 0
3 29 0 0
4 42 0 0
S 45 0 0
6 198 0 0
/ 660 0 0
8 1055 55 e
9 784 0 o
10 1335 335 390
11 1144 144 534
12 1366 366 900
13 1326 326 1226
14 1238 238 1464
15 1109 109 1573
16 1167 167 1740
17 1321 321 2061
18 1535 535 2596
19 975 0 2571
20 639 0 2210
" B 0 1630
22 389 0 1019
23 280 0 299
24 320 0 0
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Cumulative number of queuing vehicles (vph)

Cumulative number of queuing vehicles (vph)
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(b) Short-term work zone delay

Figure 1 Mathematical model for work zone delay
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storage node = == information and Boltzmann nodes
O Boltzmann network node <«—— Interlayer connection

Hourly traffic flow approaching work zone at time i (i= 1,24)

Cy(i,n): Vector to store the work zone information in the input layer (i= 1,24)

Cu(j):  Vector to store the local minimum work zone information in the hidden layer (j= 1, n)

Co:

Vector to store the optimum work zone information in the output layer

Figure 2 Architecture of the Boltzmann-simulated annealing neural network for short-term
freeway work zone cost optimization problem
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Figure 3 Flow chart of the hybrid Boltzmann neural network-simulated annealing model used to solve the
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Figure 4 Cumulative numbers of queuing vehicles for Example 1A
(Four-lane freeway with one lane closure, ADT=1000 vph)
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Figure 5 Variation of the work zone costs versus the work zone segment length for example 1A
(Four-lane freeway with one lane closure, ADT = 1000 vph)
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Figure 6 Variation of work zone costs versus the starting time of the day for
the global optimum solution of 0.35 km for the work zone segment length and 8 A.M. for the starting time for example 1A
(Four-lane freeway with one lane closure, ADT = 1000 vph)
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Figure 7 Variation of the work zone costs versus the work zone segment length at the starting time 9 A.M.
for example 1A (Four-lane freeway with one lane closure, ADT = 1000 vph)
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Figure 8 Variation of the work zone costs versus the work zone segment length for example 2B
(Six-lane freeway with two-lane closures)
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Figure 9 Variation of work zone costs versus the starting time of the day for
the global optimum solution of 0.20 km for the work zone segment length and 7 A.M. for the starting time for example 3

88



Part 111

Radial Basis Function Neural Network for Work Zone Capacity and Queue
Estimation

89



RADIAL BASIS FUNCTION NEURAL NETWORK FOR WORK ZONE CAPACITY
AND QUEUE ESTIMATION

Asim Karim® and Hojjat Adeli®, Fellow, ASCE

ABSTRACT. An adaptive computational model is presented for estimating the work zone
capacity and queue length and delay taking into account the following factors: number of lanes,
number of open lanes, work zone layout, length, lane width, percentage trucks, grade, speed,
work intensity, darkness factor, and proximity of ramps. The model integrates judiciously the
mathematical rigor of traffic flow theory with the adaptability of neural network analysis. A
radial-basis function neural network model is developed to learn the mapping from quantifiable
and non-quantifiable factors describing the work zone traffic control problem to the associated
work zone capacity. This model exhibits good generalization properties from small set of
training data, a specially attractive feature for estimating the work zone capacity where only
limited data is available. Queue delays and lengths are computed using a deterministic traffic
flow model based on the estimated work zone capacity. The result of this research is being used
to develop an intelligent decision support system to help work zone engineers perform scenario

analysis and create traffic management plans consistently, reliably, and efficiently.

> Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic
Science, The Ohio State University.
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INTRODUCTION

Recognizing the need for serving the public’s present and future transportation needs the
Transportation Equity Act for the 21% Century (FHWA, 1998) has earmarked increased funding
for maintenance, rehabilitation, and reconstruction of the nation’s aging highway system. It is
therefore expected that the number of work zones would increase in the future impacting further
the normal operation of the highway system. The primary goal of the various departments of
transportation (DOTSs or traffic agencies) is to enhance mobility and safety at all times on the
highway system. Over the years the quality and uniformity of traffic control devices and
procedures have improved. However, the numbers of work zone related fatalities and injuries
have remained practically the same and the traveling public has become increasingly frustrated
with additional mobility restrictions (FHWA, 2000). A large population is exposed to work
zones and their negative impacts. This in turn generates widespread negative sentiments towards
the public agencies responsible for providing efficient and safe transportation services to the
public.

As work zones on today’s highways are becoming an increasingly frequent and unavoidable
reality traffic agencies are faced with the challenging problem of effectively planning and
managing work zones in their jurisdictions. This is a complex multifaceted problem that requires
life cycle cost analyses at the system level. An analysis at the system level, however, will only be
useful when a reliable model for the impact of a given work zone on traffic flow is available. In
current practice, work zone engineers rely on their judgment based on previous experiences to
quantify work zone traffic impacts and to make decisions. Work zone engineers have to consider
a large number of factors such as work zone layout, work intensity, diversion of traffic, and

driver behavior.
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The effectiveness of a work zone traffic management plan (TMP) may be measured by the

delay experienced by motorists and/or the length of queue formed on the upstream side. To

improve the objectivity and reliability of a work zone TMP a reliable model is needed that maps

traffic flow and work zone characteristics to delay time and queue length. For such a model to be

useful in practice it must have the following characteristics:

It should be based on a simple underlying principle of traffic flow. Complicated physical
and/or psychological models of traffic flow are unrealizable and intractable for practical
purposes. Also, the data input needed for some of these models are not readily available thus
introducing a source of error. A simple model, on the other hand, can be reasoned with and
‘calibrated’ to produce reliable results for different work zone scenarios.

It should consider the major factors that affect traffic flow through work zones. For example,
work zone capacity should not be an input but rather should be determined from an input of
work zone characteristics. Consequently, the model should be able to process both
quantifiable and non-quantifiable (or linguistic) variables involved in the analysis.

It should be flexible in the sense that it can be adapted and extended for the analysis of
different work zone traffic control scenarios. In particular, its applicability should not be
restricted to a single roadway geometry and/or work zone layout. To accomplish this the
model should be capable of learning from input/output data and not be based solely on a
physical/psychological model of traffic flow. This is essential because real world behavior
under all situations can not be modeled satisfactorily by conventional mathematics only.

With these guidelines in mind, a new adaptive computational model is developed for

estimating the work zone capacity as well as queue delay and length based on the conservation

principle of traffic flow. The model integrates judiciously the mathematical rigor of traffic flow
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theory with the adaptability of neural network analysis. A radial-basis function neural network
(RBFNN) model is developed to learn the mapping from quantifiable and non-quantifiable
factors describing the work zone traffic control problem to the associated work zone capacity.
Queue delays and lengths are computed using a deterministic traffic flow model based on the
estimated work zone capacity. The goal of this research is to help create an intelligent decision

support system to help work zone traffic engineers create TMPs consistently and efficiently.

REVIEW OF WORK ZONE TRAFFIC CONTROL PLANNING

A work zone is a region within an existing highway’s roadway where active maintenance,
rehabilitation, and/or reconstruction work is carried out. The highway is not closed and traffic
flow and highway work exists in close proximity to each other. A work zone thus imposes a
spatial and temporal restriction on a highway’s roadway that negatively impacts the normal flow
of traffic. These impacts appear as increased congestion, travel times, accidents, and a greater
level of dissatisfaction among the traveling public. Work zones are planned and managed to
minimize these impacts and the overall cost. A primary concern of traffic agencies is creation of
TMPs for long-term stationary work zones (with duration of more than one day) because they are
of high impact and visibility with a lot at stake for all parties involved. Development of such
plans requires a careful analysis of traffic flow through the work zone to determine the best work
phasing and work zone layout. As mentioned earlier, the overall problem of planning and
managing of work zones in a highway system is complex requiring life cycle cost analyses.
Nowadays, however, the primary focus of traffic agencies is the creation of a TMP for a given

work zone that minimizes queue delays and lengths.
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Construction and maintenance work zones on highways have been studied for more than
30 years in an effort to develop safer and effective TMPs. A survey of the literature that
specifically deals with mobility of traffic through work zones reveals a mix of empirical studies
and mathematical analyses. Empirical studies collect and analyze data from work zones in an
effort to develop an understanding of traffic demand, work zone capacity, work zone layout,
traffic mitigation strategies, and traffic congestion.

By analyzing data from 161 observations of freeway queuing Cottrell (2001) presents an
empirical model of queuing delay using linear regression analyses. Equations are presented that
relate traffic flow and capacity variables to queue delay variables. The model, however, is for
recurrent congestion only and does not consider congestion caused by work zones and their
associated variables. Cassidy and Mauch (2001) also study recurrent congestion using
cumulative plots of traffic count and show that the density in long queues that span several
interchanges decreases in the upstream direction. In an earlier study Cassidy and Bertini (1999)
analyze discharge patterns from freeway bottlenecks and conclude that discharge rates are nearly
constant when taken cumulatively. These two articles provide general insights into queuing
behavior caused by bottlenecks that may be applicable to work zones also. By analyzing data
from 24 work zones Dixon et al. (1996) present capacity values of work zones for both urban
and rural freeways. They found that work zone capacity is affected significantly by work
intensity, rural and urban location, and darkness. The presence of a work zone forces many
regular motorists to choose alternative routes even when a diversion is not specified explicitly.
This phenomenon, called natural diversion, can play a significant role in work zone traffic flow
analysis. Natural diversion is studied by Ullman (1996) for the particular situation where the

freeway has continuous frontage roads. Krames and Lopez (1994) provide recommendations for
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work zone capacity after analyzing data from 33 work zones. They present a single base work
zone capacity for different work zone configurations. This base value can be modified to reflect
the effects of work intensity, traffic composition (percentage of trucks), and the presence of
ramps just upstream of the work zone. The Highway Capacity Manual (FHWA, 2000) represents
the current state of practice in traffic analyses summarizing the results of empirical studies in the
past 20 years. Its coverage of work zone capacity, however, is brief and limited to a few general
recommendations.

Empirical studies are generally limited in scope and not readily applicable to decision-
making where different scenarios have to be analyzed objectively. They do provide valuable
insights but such insights are case-specific and have to be captured in a generalized
computational model to be of value to traffic agencies in the development of TMPs. Several
models have been proposed in the literature for the determination of queue lengths and delay
times associated with work zones. In general, these models are based on one of two approaches
of traffic flow theory: shock wave analysis and queuing analysis (May, 1990). Shock wave
analysis traces shock waves, or boundaries demarcating different flow regimes, in time and space
to determine regions of queued (congested) and uncongested flow. Shock wave analysis is
deterministic in nature and uses only two macroscopic traffic flow parameters, traffic demand
and roadway capacity, as input. It does not take into account the dependence of traffic demand
and work zone capacity on many other parameters and therefore is not very reliable for work
zone traffic flow analysis. In queuing analysis, a work zone is modeled as a service process
where vehicles arriving at the work zone experience some delay (queue delay) before they are
able to continue along the highway. Queuing analysis can be deterministic or stochastic, and it

may use either macroscopic or microscopic traffic flow parameters. Deterministic queuing
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analysis suffers from the same shortcoming as shock wave analysis while stochastic analysis
requires traffic distribution information that is often not available in practice. A microscopic
stochastic model of traffic flow provides the most detailed analysis possible. The accuracy of
such a model, however, depends on the accuracy of human-vehicle-environment behavior
models, which are still not well understood and are an area of research.

Chien and Schonfeld (2001) present an optimization model for the optimal length of a work
zone on a four-lane divided highway (2-lanes in each direction) with one lane in each direction
closed. The objective function is the total cost including user cost, accident cost, and agency
maintenance cost. The model assumes that work zone capacity is constant and independent of
work zone characteristics. Islam and Seneviratne (1993) evaluate the suitability and effectiveness
of four traffic planning software tools for the evaluation of TMPs, while Sadegh et al. (1988)
present a simulation model for work zones on arterials. The computer program called QUEWZ
(queue and user cost evaluation at work zone) evaluates queue lengths and additional user costs
for work zones on freeways (Memmott and Dudek, 1984; Krammes et al., 1987). This model
uses the conservation of flow principle to calculate the queue lengths and user costs for different
lane closure configurations and work schedules. The capacity of the work zone is calculated
from empirical speed-flow-density relationships and is independent of the work zone
characteristics such as work zone layout and work intensity.

Recently, an initiative at the Federal Highway Administration (FHWA) was launched to
develop strategic tools for work zone traffic analysis and decision support. As part of this
program, a spreadsheet based tool called QuickZone has been developed to quantify work zone
queue delays and lengths given work zone capacity, traffic demand, and work phasing (Mitretek,

2000). The QuickZone software takes as input hourly values of traffic demand and work zone
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capacity. Queue lengths and delays are computed by the deterministic input-output conservation
principle of traffic flow. The software does not take into account work zone layout, lane widths,
driver behavior, work intensity, and proximity of ramps in the computation of work zone queue

delays and lengths.

DETERMINISTIC QUEUING MODEL FOR WORK ZONE TRAFFIC ANALYSIS

A deterministic macroscopic queuing model is used to calculate queue lengths and delays
produced by bottlenecks on highways such as work zones. This model is based on the principle
of conservation of flow which states that under homogeneous roadway conditions the number of
vehicles entering a segment in a given time period must be equal to the number of vehicles
exiting the segment in the same time period. If the road segment is inhomogeneous with a
bottleneck such as a capacity reducing work zone existing on a portion of the segment, then the
number of vehicles exiting may be fewer than the number of vehicles entering the segment. The
difference in such a situation represents the queue formed in the upstream direction.

This model is an adaptation of the theory of incompressible fluid flow to vehicular traffic
streams. It only requires as input traffic demand (or flow rate), highway capacity, and their
variation over time. If conservation of flow is evaluated over a reasonable time period (say
greater than 15 minutes) the model produces practically accurate estimates for queue lengths and
delay times that can be used for planning, assuming that the demand and capacity values
represent the actual conditions on the highway accurately. In the following paragraphs, the
model is formulated for a single link or segment of freeway containing a capacity reducing work

Zone.
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Figure 1 shows the layout of a freeway segment with a construction work zone. The work
zone acts like a metered on-ramp that allows only a certain number of vehicles to pass through in
a given amount of time. Major freeway repair, rehabilitation, and reconstruction projects are
multi-day repetitive operations where work zone layout and phasing is often identical from day
to day. Therefore, it is sufficient to analyze a typical day (or at most a few typical days) of work
for their traffic impact. If a 1-hour evaluation time period (Az = 1 hour) is considered twenty
four values of traffic demand or anticipated hourly traffic flow approaching the work zone (f))
and highway capacity (c) are needed as input to cover a period of one day. Let these values be
denoted by f; (¢=0,..,23) and ¢(?) (¢=0,..,23), respectively, where the index ¢ indicates the time
period. Then, for time periods ¢ = 1, 2, 3,..., 23, using the conservation principle the number of
vehicles in the queue in time period ¢ is given by

O(t) = max[f, () — c(¢) + O(t —1),0] t=1,2,3,...,23 (1)

The term Q(¢—1) on the right hand side of recursive Eq. (1) represents the number of vehicles in
the queue for the previous time period. When ¢ = 1 the queued vehicles at the previous time

period Q(¢#—-1) can be taken equal to zero if the beginning of evaluation period is chosen at a

time when demand is less than the capacity. The highway capacity c(¢) is equal to the work zone
capacity, cy, when the work zone exists and equal to co, the capacity of the freeway in the
absence of the work zone (Figure 1).

If k£ is the jam density (the number of queued vehicles that occupy a given length of

highway), then the average length of queue at time period ¢ is given by
QL(t)=% t=0,1,2,...,23 (2)

The expected daily queue delay (in vehicle-hours) experienced by motorists is given by
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Z o(r) + Q(t Dy, (3)

where A¢ =1 hour is the evaluation time period. Equations (1)-(3) define the primary parameters
needed by the work zone engineer to assess the impact of a work zone on traffic in creating a
TMP. Using these values the user delay cost can be estimated provided that the average cost per
vehicle hour expressed in dollars per vehicle hour is known. The accuracy of this analysis

depends on the accuracy of the demand and capacity values used.

ESTIMATION OF TRAFFIC DEMAND AT WORK ZONES

To accurately predict the temporal development and extent of queues and delays created in
work zones it is necessary to have a reasonably accurate estimate of the traffic demand, that is
the anticipated hourly traffic flow of the freeway approaching the work zone. The annual average
daily traffic (AADT), which is the daily traffic demand averaged over all days of the year, is
unsuitable for this purpose. Shorter time estimates of traffic demand can be obtained from the

AADT when daily, weekly and seasonal demand factors () are known for the freeway. Many

traffic agencies maintain values for daily, weekly, and seasonal demand factors. For example,

ODOT  specifies  values for g in the range of 076 and 1.72

(http://www.dot.state.oh.us/techservsite/). Many traffic agencies also maintain hourly vehicle

counts on major highways, in which case o = 1.

These traffic demand values reflect the behavior and usage pattern of the public under
normal and unrestricted freeway conditions. The usage patterns usually change after the
establishment of the work zone impacting analyses of work zone traffic congestion.Once a work

zone is set up on a freeway, traffic demand for that segment of the freeway reduces in reaction to
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increased travel times and availability of alternate routes. Therefore, the traffic flow approaching

a work zone can be expressed as
f() =a,()a, f,(7) (4)

where £ is the average traffic demand on the highway prior to the establishment of the work

t

zone, « is the seasonal demand factor, and «,,(f) (0<a, <1) is the demand reduction factor

(or diversion factor). The value of the latter factor depends on the number of motorists: (1)
choosing alternate routes, (2) changing their schedules to avoid the work zone, (3) canceling
their trips because of the work zone, and (4) changing transportation mode, for example, opting
to use public transportation. Diversion of traffic through alternate routes may be signed or
advised by an advanced traveler information system (ATIS). Or, it may occur naturally where
motorists familiar with the highway corridor select alternate paths to their destinations. The

magnitude of «, (¢) is determined from traffic demand studies carried out for similar freeway

work zone scenarios. Alternatively, or in addition to traffic demand studies, the demand
reduction factor can be determined from a traffic network analysis of the freeway corridor that
includes the work zone and alternate origin-destination routes. This factor can change from one
time period to another as the congestion caused by the work zone changes. This is because long
queues and delays dissuade motorists from continuing on the freeway and force them to seek

alternate routes.

NEURAL NETWORK MODEL FOR ESTIMATING WORK ZONE CAPACITY
Factors Affecting the Work Zone Capacity and Included in the Model
Accurate estimates of work zone capacity are critical for reliable and accurate computation

of queue delays and lengths at work zones. Work zone capacities and, in general, freeway
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capacities depend on the prevailing roadway, traffic, and control conditions. As these conditions
within a work zone are significantly different from those in an unrestricted segment of the
freeway, work zone capacities have to be estimated separately for each work zone scenario by
taking into consideration the unique characteristics of the work zone TMP that impact capacity.
For example, work zone layouts may contain uncommon geometries such as lane drop-offs and
sharp horizontal alignment changes that cannot support high speeds thus reducing the freeway
capacity.

The primary factors impacting the work zone capacity and considered in this research are:
number of lanes (x1), number of open lanes (x,), work zone layout (x3), work zone length (x),
lane width (xs), percentage of trucks (xs), grade (x7), work zone speed (xg), work intensity (x),
darkness factor (x10), and proximity of ramps or interchange effects (x11). Theoretically, work
zone capacity can be expressed as a function of these parameters:

Cw = F(X,,X,,X5,X,,Xc, X5, X7, Xg,Xg, X10,%Xq7) (5)

The number of open lanes can vary from 1 to the maximum number of existing lanes in each
direction. Some work zone layouts do not involve a reduction in the number of open lanes after
the creation of the work zone (Figure 2b). The work zone layout parameter identifies one of the
three common work zone layouts used in practice known as lane merging, lane shifting, and
crossover (shifting a diverted lane onto the right-of-way of the opposing traffic) (Figure 2). For
computational modeling, these three layouts are identified by numbers 0.1, 0.5, and 0.9,
respectively. The lane width parameter is the minimum width of a traveled lane within the work
zone. The standard highway lane width in the U.S. is 12 ft. A width less than 12 ft will
negatively impact the lane’s capacity. The percentage of trucks parameter represents the

percentage of trucks, buses, and heavy vehicles in the traffic stream. A greater percentage of
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trucks tends to reduce mean speeds through the work zone and consequently reduce freeway
capacity. Freeway grade impacts the mean speed of traffic through the work zone, especially
when the percentage of trucks is large.

As part of a TMP a lower speed limit may be imposed and enforced through the work zone to
enhance safety. A lower work zone speed, however, decreases the capacity of the work zone.
The work intensity parameter describes the intensity of work activity carried out in the work
zone. This is a readily non-quantifiable parameter. In this research, the work intensity is broadly
categorized into low, medium, or high depending on the size and number of the equipment and
labor at the site, the noise and dust created, and the proximity of work to the traveled lanes. For
example, pavement marking operation is a low intensity work, pavement resurfacing is a
medium intensity work, and pavement rehabilitation/lane addition is a high intensity work. For
computational modeling, these three work intensity categories are identified by 0.1, 0.5, and 0.9,
respectively. Low-visibility and darkness reduces capacity as motorists become more cautious
under such conditions. The darkness factor can vary from greater than 0 to 1 where 1 indicates
adequate illumination that does not reduce capacity.

The interchange effects (proximity of ramps) parameter indicates the presence of an on- or
off-ramp within 1500 ft upstream of the work zone taper, or 500 ft downstream of the work zone.
The proximity of ramps produces turbulence in traffic flow reducing the number of vehicles
moving through the work zone. This parameter is modeled as a binary two-valued parameter
with values of 0 (no ramps) or 1 (ramps exist in proximity to the work zone).

The Case for Neural networks
There is no mathematical function for the work zone capacity function represented by Eqg.

(5). In other words, the work zone capacity problem is too complicated to be amenable to
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classical mathematical solutions. The widely used Highway Capacity Manual (HCM) (TRB,
2000) provides scant information on the work zone capacity based on empirical data
measurements. It provides a base capacity value for ideal unrestricted highway segments. This
value can be modified to take into account certain deviations from the ideal conditions by
applying reduction factors. Conditions within work zones are far from ideal and the values and
reduction factors given for the ideal highway segments are generally not applicable to work zone
analysis. The HCM provides a base capacity of 1600 vehicles per hour per lane (vphpl) for short-
term work zones of any layout. Guidelines are also given on how to modify the base value to
take into consideration work intensity, percentage trucks, proximity of ramps, and lane widths.
Other factors considered in this research and described in connection with Eq. (5) such as work
zone layout are not considered. Furthermore, it is important to consider the interaction of various
factors on the work zone capacity. For example, darkness has a significant impact when the work
is of high intensity.

Artificial neural networks have been used to solve complicated pattern recognition and
estimation problems not amenable to conventional mathematical modeling (Adeli and Hung,
1995; Adeli and Park, 1998; Adeli and Karim 2001). Most civil engineering applications of the
neural networks are based on the simple backpropagation (BP) algorithm (Adeli, 2001). But, the
BP algorithm has shortcomings including very slow convergence rate and problem-dependent
trial-and-error selection of the learning and momentum ratios. In the next section, a radial-basis
function neural network (RBFNN) is developed for estimating the freeway work zone capacity.

The RBFNN has a simple topology consisting of an input layer, a hidden layer of nodes with
radial basis transfer functions, and an output layer of nodes with linear transfer functions. Using

the training data, the RBFNN creates clusters for similar patterns. Each cluster has a center

103



(represented by a hidden layer node). Similarity of any new pattern to the training patterns is
measured by its proximity to the centers of the clusters. As such, the RBFNN is a regularization
or generalization network (Moody and Darken, 1989; Poggio and Girosi, 1990). It is most
suitable for estimation problems where limited data is available and overfitting needs to be
avoided. The danger of overfitting is reduced by the local nature of the transfer functions that
allow only a fraction of the nodes to participate in the mapping of a given pattern. When data are
limited the effect of noise becomes significant and some patterns may not be sufficiently
represented in the training. Generalization in the vicinity of cluster centers is maintained by the
graded nature of the transfer functions. The generalization properties of RBFNNs are discussed
in detail by Poggio and Girosi (1990) and Adeli and Wu (1998). In contrast, the multilayer
feedforward neural network trained by the BP algorithm has a large number of global transfer
functions making it susceptible to the overfitting problem when training data are limited and
noisy.

Another advantage of the RBFNN over the multilayer feedforward neural network and BP
algorithm is its rapid training. Information in a RBFNN is locally distributed. As such, only a
few weights have to be modified in each iteration during the training process. Because of these
reasons, the RBFNN is found to be suitable for learning the work zone capacity function for
which only limited data is available.

Radial-Basis Function Neural Network for Estimating Work Zone Capacity

The architecture of the proposed RBFNN for estimating the work zone capacity is shown in

Figure 3 schematically. It has an input layer with eleven nodes representing the eleven

parameters included in the work zone capacity function defined by Eqg. (5), a hidden layer with
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N, nodes with radial-basis transfer functions, and an output layer with one node representing
work zone capacity.

Some of the variables in Eqg. (5), such as the work intensity, are in linguistic terms. Such
linguistic variables are pre-processed first by converting them to numerical values normalized
between zero and one. The numerical parameters are normalized between 0 and 1 as well. The
normalization is done so that no single factor dominates the training process. The number of
nodes in the hidden layer, N, is equal to the number of cluster centers used to characterize the
training data. It is chosen as a fraction of the total number of training instances. This choice is
based on numerical experimentation for the problem at hand to determine which number
adequately covers the input space and produces the best mapping. A number within the range of
10 to 30% of the number of training instances is found to produce satisfactory results (Adeli and

Karim, 2000). The cluster centers are represented by vectors p; (1< j < N, ) obtained using the

fuzzy c-means algorithm described in Adeli, and Karim (2000).

The weight of the link connecting the input node i to the hidden node j is set equal to 4,
corresponding to the ith component of the vector p,. The output of a hidden node j is

determined by the following Gaussian transfer function:
¢A =exp| — M (6)
/ 20'5

where x is the vector of input variables and the factor o, controls the spread or range of
influence of the Gaussian function centered at p . In this work o, is calculated as (Adeli and

Karim, 2000)
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N
aj=%;”uj—uiu 1<j<N, (7)

where N is the total number of training instances. Equation (7) approximates the spread

parameter o, as one third of the mean distance between cluster centers. The connection from the
hidden node j to the output node is assigned the weight A, to be described shortly. The output y

of the network is then given by
Ny
y=>64 (8)
j=1

The weights 4, are calculated by minimizing the error between the network computed output y

and the desired output y, based on training examples. In other words, to train the network for

4,’s we solve the following unconstrained optimization problem:

Minimize E()) = i‘yi - ¥ (9)
i=1

The gradient descent optimization algorithm is used to solve this optimization problem. The

output y of the system represents the work zone capacity, cy.

COMPUTATION OF WORK ZONE QUEUE DELAYS AND LENGTHS

Figure 4 shows the inter-relation of work zone capacity, traffic demand, and delay estimation
models schematically. The work zone capacity estimation model takes as input the eleven
parameters affecting work zone capacity. These values are passed through the trained RBFNN
model to determine the work zone capacity for the given work zone scenario. The traffic demand
estimation model takes as input the hourly traffic demand prior to the establishment of the work

zone, the queue delay and length, if any, and the driver behavior characteristics. The latter two
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factors are used to estimate the demand reduction factor. The estimates of queue delay and
length are obtained from the work zone queue delay and length estimation model. This model
takes as input the outputs from the traffic demand and work zone capacity estimation models.
The work zone capacity and the modified traffic demand are used to estimate the work zone
queue delay and length using Egs. (3) and (2), respectively.

The model is evaluated for each time period Az (for example, every hour). If the work zone
scenario does not change during the construction then the work zone capacity remains constant
during the analysis. Otherwise, different work zone capacity values are determined for different
times of the construction reflecting the changing work zone scenario. Similarly, if the traffic
flow approaching the work zone is known and the demand reduction factor is one, the traffic

demand model is evaluated once. Otherwise, it is evaluated at every time step.

TRAINING AND TESTING THE NETWORK

The RBFNN model for work zone capacity estimation is trained using forty examples of
work zone capacity (Table 1). These examples are created from the work zone capacity table
provided by ODOT, the guidelines presented in the Highway Capacity Manual (TRB, 2000) for
different highway and work zone capacities, and the experience and judgment of the authors.
The ODOT lookup tables provide work zone capacity values for lane closure configurations of 3
to 2, 3to 1, and 2 to 1, lane widths of 10, 11, and 12 ft, truck percentages from 0 to 25, work
zone lengths from 0 to greater than 8 miles, and roadwy upgrades from 0 to 6 percent. Guidelines
from the HCM, in the form of recommended ranges of adjustments, are used in conjunction with
the judgement of the authors to adjust the capacity values for work zone layout, work zone

speed, work intensity, and proximity of ramps. The training examples represent as many possible
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combinations of work zone scenarios to ensure that the boundaries of the input space are
adequately covered for effective generalization by the RBFNN model. Training of the network
took less than 10 seconds on a Pentium 4 PC with a root mean square error of 165. The purpose
of the training was to achieve a generalized mapping rather than a perfect fit to the training data.
A perfect fit would be of little practical value considering the noisy nature of the training data
and the complexity of the problem that depend on many factors in addition to the eight primary
factors modeled in this research.

The network is tested using 27 work zone capacity values observed in the field and reported
in the literature (denoted by scenarios 1 to 27 in Figure 5). Nine samples are taken from Dixon et
al. (1995) (scenarios 1 to 9 in Figure 5). These samples are for two-lane (in each direction) rural
freeways in North Carolina with one lane closed and one lane open to traffic. The North Carolina
data contain eight of the eleven parameters needed for the work zone capacity estimation model.
Values of zero are used for the unavailable parameters. Twelve samples are taken from Jiang
(1999) for work zones on four-lane freeways in Indiana (scenarios 10 to 21 in Figure 5). These
samples are also for work zones with one open and one closed lane. They contain values for only
seven of the eleven parameters. Six samples are taken from Kim et al. (2001) for work zones on
freeways in Maryland (scenarios 22 to 27) in Figure 5). These samples are for work zones with
two open lanes. The Maryland data also contain seven of the eleven parameters used in the new
work zone capacity estimation model.

The RBFNN is used to estimate the work zone capacity for these real work zone scenarios
from a variety of sites with different traffic and geometric characteristics. The work zone
capacity values estimated by the RBFNN model are compared with the observed values in

Figure 5.The error is mostly in the range of 0.4% to 11% while for 10 samples the errors range
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from 20 to 71% (samples 4 to 9, 12 to 14, and 25). One reason for the large errors in the
estimated work zone capacity values is the large percentage of trucks in these samples’ scenarios
(19 to 27% for samples 4 to 9, 22 to 32% for samples 12 to 14, and 28% for sample 25). The
percentage of trucks parameter significantly impacts work zone capacity by reducing mean
speeds through work zones. The impact is compounded when the work zone is on an upgrade, a
parameter not reported in the sample data used to train the neural network model. Furthermore,
the maximum value for the percentage of trucks in the training data set is 25, thus forcing the
RBFNN model to extrapolate for scenarios with higher values. It should also be noted that the
data used for testing the RBFNN model suffered from several problems including missing values
for several key parameters affecting work zone capacity and differing and/or unknown
procedures for data collection and analysis. Nevertheless, considering the very limited amount of
training data available to the authors, the model yields reasonably accurate results for most
scenarios.

The RBFNN model presented is general and is expected to perform much better when tested
with a larger and more reliable data set. This observation is based on the fact that the training
root mean square error is 165 vehicles per hour, which is acceptable for most practical purposes.
EXAMPLES
Example 1

This example demonstrates the use of the new work zone capacity and delay estimation
model as an intelligent decision support system for the creation of a work zone TMP. It also
highlights the significance of accurately estimating the work zone capacity for reliable

estimation of queue delay and length. A work zone needs to be established on a six-lane freeway
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(three lanes in each direction) for lane resurfacing. The work will start at 6 AM each day and
terminate 8 hours later. The capacity of the unrestricted freeway (in one direction) is 5400 vph.
Six work zone scenarios are evaluated for this work, described in Table 2. Each scenario
represents a different work zone geometry and management option. It is desired that at least two
lanes be kept open through the work zone. The impact of work zone layout, lane width, length,
speed, and proximity of ramps are investigated. A work zone scenario with one open lane
(scenario 6) is also considered for situations where it becomes unavoidable. The RBFNN model
for estimating work zone capacity is used to determine capacity values for these scenarios. The
results, given in Table 2, clearly show the significant dependence of work zone capacity on
parameters such as length, lane width and proximity of ramps. By increasing the work zone
length from 1 to 5 miles, the work zone capacity is reduced from 2785 to 2705 vph (scenarios 1
and 2). The width of lanes has a more significant effect, as seen from the estimated capacity
values for scenarios 3, 4, and 5. The proximity of a ramp reduces capacity by only 22 vph
(scenarios 4 and 5). Comparing scenarios 1 and 2 with scenarios 3, 4 and 5 it is seen that the lane
merging layout produces slightly better capacity values as compared to the crossover layout.
Table 3 gives the number of vehicles in queue at each hour (or queue delay in vehicle-
hours) for the six work zone scenarios. The hourly traffic flow approaching the work zone
(traffic demand) is given in column two. In this example, it is assumed that the traffic demand
reduction factor is 1. The maximum vehicles in queue produced by the six scenarios varies from
115 (scenario 3) to 10193 (scenario 6). Assuming the jam density (k) is 200 vehicles per mile per
lane and queue is evenly distribution among the 3 lanes, the maximum queue lengths produced
by these scenarios varies from 0.19 to 17 miles. The maximum determined for scenario 6 may

not be attained in practice because motorists would react to the delay and change their behavior.
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In any case, scenario 6 should not be adopted except for emergency situations. Work zone
scenario 3 provides the best solution for this example. This scenario satisfies ODOT’s
requirement that queue lengths should be less than 0.75 miles long at all times (ODOT, 2000).

The significance of accurate work zone capacity estimation is evident from Table 3.
Comparing scenarios 3 and 4, a slight increase in work zone capacity caused by modifying the
work zone characteristic has drastically reduced the queue delay. Scenario 4 causes a daily queue
delay of 7097 vehicle-hours as compared to only 250 vehicle-hours for scenario 3.
Example 2

This example illustrates the use of the demand reduction factor and its impact on the
computation of work zone queue delay and length. Hourly traffic demand is often measured on
or estimated for unrestricted freeways. However, when a work zone is established the traffic
flow approaching the work zone often reduces as motorists change behavior in reaction to delays
or delay information. Data for the six-lane freeway presented in Example 1 is used in this
example. Work zone scenario 1 is analyzed. The traffic demand on the freeway and the demand
reduction factors are given in Table 4. Up to 6 percent of motorists change their behavior and
reduce the flow approaching the work zone. The results of the capacity and delay estimation
model are given in Table 4. It is seen that the number of vehicles in queue decreases sharply as
compared to the case when no reduction in demand is considered in the analysis. This example
highlights the importance of warning motorists in advance and providing them with alternate
routes to the reduction of queue delays and lengths. It also shows that using traffic demand on
unrestricted freeways for the computation of work zone queue delays and lengths will
overestimate these values.

Example 3

111



This example illustrates the impact of work scheduling on work zone delays and queue
lengths. A work zone on a four-lane (two lanes in each direction) freeway is analyzed. The work
zone has a lane merging layout with one lane open having a width of 11 ft. Ten percent of the
traffic stream is composed of heavy vehicles. The speed limit through the work zone is 45 mph.
The work is of medium intensity with a duration of 6 hours, and no ramps exist in the proximity
of the work zone. Using the RBFNN model for work zone capacity estimation, the capacity of
this work zone scenario is found to be 1581 vph. The unrestricted freeway capacity is 3800 vph.
The hourly traffic flow approaching the work zone (traffic demand) is given in Table 5. Three
work zone starting times (or phasing) are analyzed. In phasing 1, work starts at 12 noon and ends
6 hours later. In phasing 2, work starts at 4 AM, while in phasing 3 work starts at 12 midnight.
The results computed using the work zone capacity and delay estimation model are given in
Table 5 and shown in Figure 6. It is seen that by scheduling work when traffic demand is low

one can reduce or even eliminate work zone queue delays and lengths..

CONCLUSION

In this article, a new model for work zone capacity and delay estimation is presented. The
model considers 11 parameters in the estimation of work zone capacity: number of lanes, number
of open lanes, layout, length, lane width, percentage trucks, grade, speed, work intensity,
darkness factor, and proximity of ramps. A RBFNN model is developed to map a work zone
scenario to its capacity. The model also considers reduction in traffic flow approaching the work
zone in the computation of queue delays and lengths. Accurate estimation of work zone capacity

and demand are essential for the accurate and reliable determination of work zone queue delays
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and lengths. Three examples are presented to illustrate the use of the new model and to highlight

the significance of capacity and demand values in the analysis of work zones.
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Table 1 Training data for the RBFNN model for estimating work zone capacity

No.of | No.of | Layout | Length | Lane [Percentage| Grade | Work | Work |Darkness| Inter- | Work
lanes open width trucks zone |intensity| factor | change | zone
lanes speed effects | capacity

(miles) | () (%) | (mph) (vph)

2 1 M 1 10 5 0 45 Low 1 No 1450
3 1 M 2 11 5 1 45 Low 1 No 1430
2 2 S 8 11 10 0 55 Low 0.95 No 2900
2 2 S 1 11 3 1 55 Medium 1 Yes 2850
3 1 C 5 11 8 5 50 High 1 No 1350
3 2 M 2 11 15 0 40 Low 0.9 Yes 2750
3 3 S 10 12 5 0 40 | Medium 1 No 4650
2 1 M 1 12 25 2 45 Low 1 Yes 1300
2 1 C 2 12 15 2 35 | Medium 1 Yes 1250
3 2 C 5 12 10 0 45 High 0.9 No 2920
4 3 M 1 10 5 5 35 High 1 Yes 4000
3 2 M 15 10 7 0 40 High 1 No 2750
2 2 S 20 11 3 1 50 |Medium| 0.95 No 2950
2 2 S 3 12 10 0 55 Low 1 Yes 3000
2 1 M 5 11.5 0 5 40 | Medium 1 Yes 1450
2 1 C 2 10 10 0 40 Low 0.95 No 1400
3 2 M 4 11.5 15 1 45 Medium 1 No 2980
3 2 M 2 12 25 1 45 High 1 No 2650
2 1 C 2 10 5 0 35 |Medium| 0.9 Yes 1250
2 1 M 2 10.5 8 0 45 | Medium 1 No 1375
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Table 1 — continued

No. of | No.of | Layout | Length | Lane [Percentage, Grade | Work | Work |Darkness| Inter- Work
lanes open width trucks zone |intensity | factor | change | zone
lanes speed effects | capacity

(miles) | (ft) (%) | (mph) (vph)

2 1 M 1 12 3 2 55 High 1 No 1550
3 2 C 5 12 10 1 45 Low 1 Yes 2950
4 3 M 5 11 15 1 45 Low 1 Yes 4100
3 1 M 1 10.5 20 0 35 Medium 1 No 1310
2 2 S 5 10 10 0 40 Low 0.9 Yes 2700
3 2 M 4 10 10 0 50 Medium 1 No 2750
2 1 M 1 11 5 2 50 High 0.85 No 1300
2 2 S 2 11 5 0 45 High 1 No 2980
2 1 C 10 12 20 0 55 Medium 1 Yes 1400
2 2 S 5 11.5 5 0 45 Medium| 0.95 Yes 3000
2 1 M 2 115 10 1 40 Low 1 No 1450
2 1 M 1 10 5 0 35 Medium 1 Yes 1300
2 2 S 2 11 5 5 50 Low 1 No 2950
2 1 C 1 10.5 3 2 45 Low 0.9 Yes 1420
3 1 M 1 11 20 0 45 Medium 1 No 1380
3 2 M 1 12 25 1 45 Medium 1 No 2750
2 2 C 5 11 5 1 35 Low 0.95 Yes 4400
3 2 C 3 11 0 5 35 High 1 Yes 2850
2 1 M 1 10 5 3 40 Low 1 No 1350
3 1 M 1 115 7 0 55 Low 1 Yes 1450

M = Lane merging; S = Lane shifting; C = lane rossover

117



Table 2 Description of work zone scenarios and their capacities estimated by the RBFNN model

Sce- | No. | Layout | Lane | Length | Work Inter- Work

nario of width | (miles) | zone change zone
open (ft) speed | effects capacity

lanes (mph) (vph)

1 2 M 11 1 45 No 2785

2 2 M 11 5 45 No 2705

3 2 C 12 5 55 No 2952

4 2 C 10.5 10 45 No 2625

5 2 C 11 10 45 Yes 2603

6 1 C 12 5 50 No 1478

M = Lane merging; C = Lane crossover
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Table 3 Queue delay results for Example 1

Hour | Traffic No. of vehicles in queue
of day | demand
(vph) Work zone scenarios (defined in Table 2)
1 2 3 4 5 6

0 682 0 0 0 0 0 0
1 431 0 0 0 0 0 0
2 304 0 0 0 0 0 0
3 323 0 0 0 0 0 0
4 312 0 0 0 0 0 0
5 580 0 0 0 0 0 0
6 1934 0 0 0 0 0 456
7 2986 201 281 34 361 383 1964
8 2666 82 242 0 402 446 3152
9 3067 364 604 115 844 910 4741
10 2681 260 580 0 900 988 5944
11 3035 510 910 83 1310 1420 7501
12 2887 612 1092 18 1572 1704 8910
13 2761 588 1148 0 1708 1862 10193
14 3133 0 0 0 0 0 7926
15 3503 0 0 0 0 0 6029
16 3586 0 0 0 0 0 4215
17 4027 0 0 0 0 0 2842
18 2609 0 0 0 0 0 51
19 1895 0 0 0 0 0 0
20 1591 0 0 0 0 0 0
21 1492 0 0 0 0 0 0
22 1423 0 0 0 0 0 0
23 833 0 0 0 0 0 0

Max. 1.0 1.9 0.19 2.8 3.1 17.0

queue

length

(miles)
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Table 4 Queue delay results for Example 2

Hour of day | Demand reduction | No. of vehicles in No. vehicles in
factor queue (with demand | queue (from Table
reduction) 3, Scenario 1)
0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 0.99 0 0
6 0.98 0 0
7 0.95 52 201
8 0.95 0 82
9 0.97 190 364
10 0.97 6 260
11 0.95 104 510
12 0.94 33 612
13 0.96 0 588
14 1 0 0
15 1 0 0
16 1 0 0
17 1 0 0
18 1 0 0
19 1 0 0
20 1 0 0
21 1 0 0
22 1 0 0
23 1 0 0
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Table 5 Queue delay results for Example 3

Hour of |  Traffic No. of vehicles in queue
day demand
(vph) Phasing1l | Phasing2 | Phasing 3
0 180 0 0 0
1 50 0 0 0
2 117 0 0 0
3 420 0 0 0
4 833 0 0 0
5 1145 0 0 0
6 2161 0 580 0
7 821 0 0 0
8 1020 0 0 0
9 930 0 0 0
10 910 0 0 0
11 1320 0 0 0
12 1620 39 0 0
13 1728 186 0 0
14 2154 759 0 0
15 2420 1509 0 0
16 2021 2038 0 0
17 1460 1917 0 0
18 850 0 0 0
19 700 0 0 0
20 400 0 0 0
21 280 0 0 0
22 240 0 0 0
23 210 0 0 0
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Figure 2 Common work zone layouts (a) Lane merging, (b) Lane shifting, and (c) Crossover
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Part IV

Neuro-Fuzzy Logic Model for Freeway Work Zone Capacity Estimation
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NEURO-FUZZY LOGIC MODEL FOR FREEWAY WORK ZONE CAPACITY
ESTIMATION

Hojjat Adeli, Fellow, ASCE’ and Xiaomo Jiang®

ABSTRACT: The work zone capacity cannot be described by any mathematical function
because it is a complicated function of a large number of interacting variables. In this article, a
novel adaptive neuro-fuzzy logic model is presented for estimation of the freeway work zone
capacity. Seventeen different factors impacting the work zone capacity are included in the
model. A neural network is employed to estimate the parameters associated with the bell-shaped
Gaussian membership functions used in the fuzzy inference mechanism. An optimum
generalization strategy is used in order to avoid over-generalization and achieve accurate results.
Comparisons with two empirical equations demonstrate that the new model in general provides a
more accurate estimate of the work zone capacity, especially when the data for factors impacting
the work zone capacity are only partially available. Further, it provides two additional
advantages over the existing empirical equations. First, it incorporates a large number of factors
impacting the work zone capacity. Second, unlike the empirical equations, the new model does
not require selection of various adjustment factors or values by the work zone engineers based

on prior experience.
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INTRODUCTION

Work zone capacity has a significant impact on the congestion and traffic queue delays
which result in increased driver frustration, increased traffic accident, increased road user
delay cost, and increased fuel consumption and vehicle emissions. Highway agencies often
use the empirical and highly approximate method described in the Highway Capacity
Manual (HCM) (HCM 2000) to determine the freeway work zone capacity with lane
closures. The HCM provides a base capacity of 1600 vehicles per hour per lane (vphpl) for
short-term ideal unrestricted highway work zones. Guidelines are given on how to modify
the base value to take into account percentage of trucks, work intensity, proximity of ramps,
and lane widths. However, a large number of additional factors affect the freeway work zone

capacity estimation which are neglected in the HCM guidelines.

The earlier field measurements and investigations can be traced to the work done at Texas
Transportation Institute (TTI) from the late 1970s to the mid-1980s. TTI’s work provided the
basis for the empirical freeway work zone capacity estimation guidelines included in the
previous Highway Capacity Manual (HCM, 1985). Recently, a few studies have been conducted
for estimation of the work zone capacity based on measured field data (Krammes and Lopez,
1994; Dixon and Hummer, 1995; Dixon et al. 1997; Jiang 1999; Al-Kaisy et al. 2000; Al-Kaisy

and Hall, 2001; Kim et al. 2001).

The work zone capacity cannot be described by any mathematical function because it is a
complicated function of a large number of interacting variables. That explains the dearth of
scientific work on mathematical modeling of the freeway work zone capacity. In this article, a

novel adaptive neuro-fuzzy logic model is presented for estimating the freeway work zone
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capacity. Seventeen different factors impacting the work zone capacity are included in the
model. A neural network is employed to estimate the parameters associated with the bell-shaped

Gaussian membership functions used in the fuzzy inference mechanism.

FACTORS IMPACTING THE WORK ZONE CAPACITY AND INCLUDED IN THE

MODEL

In this article, a computational model is presented for estimating the work zone capacity
under a variety of possible work zone scenarios. A large number of factors impacting the work
zone capacity are included as inputs to the model. They are 1) percentage of truck (xi), 2)
pavement grade (X2), 3) number of lanes (xs), 4) number of lane closures (Xs), 5) lane width (xs),
6) work zone layout (lane merging, lane shifting, and crossover) (xg), 7) work intensity (work
zone type) (x7), 8) length of closure (xg), 9) work zone speed (Xo), 10) interchange effects
(proximity of ramps) (x10), 11) work zone location (urban or rural) (x11), 12) work zone duration
(long-term or short-term) (x12), 13) work time (daytime or night) (x13), 14) work day (weekday
or weekend) (x14), 15) weather condition (sunny, rainy or snowy) (Xis), 16) pavement conditions
(dry, wet, or icy) (xie), and 17) driver composition (commuters or non-commuters such as

tourists) (X17).

Since heavy vehicles such as truck occupy more space on the roadway and move slower
than passenger cars, a higher percentage of trucks tends to reduce the work zone capacity.
Kramme and Lopez (1994) study the work zone capacity and conclude that a high percentage of
heavy trucks has a significant impact on the work zone capacity. The HCM (2000) suggests a
heavy-vehicle adjustment factor given as a function of two parameters: proportion of heavy
vehicles and the passenger-car equivalent for heavy vehicles. Kim et al (2001) conduct a

regression analysis of the interaction between the work zone grade and percentage of heavy
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trucks. The presence of grades may exacerbate the flow constriction in work zones particularly

in the presence of heavy vehicles.

Measurements made at freeway work zones in Texas (Dudek and Richards, 1981;
Krammes and Lopez, 1994) and North Carolina freeways (Dixon and Hummar, 1995; Dixon at
el, 1997) show clearly that the work zone capacity varies significantly with the number of
freeway lanes as well as number of lane closures. Among three commonly used work zone
layouts, known as lane merging, lane shifting, and crossover, the lane shifting does not reduce
the number of open lanes in the work zone but may affect the work zone capacity. The capacity
value recommended for long-term work zone by HCM (2000) indicates that work zones with
lane merging have a higher average capacity value than those with a crossover. A work zone
with a lane width of less than the U.S. standard lane width of 12 feet may reduce the work zone
capacity significantly. The HCM (2000) suggests a reduction factor up to 14% to account for the

effect of lane width on work zone capacity.

Work zone capacity may decrease as the work intensity increases from the lightest (e.g.
guardrail installation) to the heaviest (e.g. bridge repair). The intensity of work activities
depends on a number of factors such as the type of work activities, the number of crews, the
number and size of equipments, and the proximity of work activities to the open lane. The work
zone intensity is classified into three levels (low, medium, or high) in Karim and Adeli (2003)
and six levels in Dudek and Richard (1981). The HCM (2000) suggests a modification of the
base capacity value of the work zone to account for the intensity of work activity without
actually providing any modification factors or guidelines. This important issue is left for the

work zone engineer to decide subjectively based on his/her experience or professional judgment.
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Work intensity is a qualitative and subjective concept without any standard classification

scheme. In this article, the work intensity is divided into six categories as defined in Table 1.

The length of the closure affects the work zone capacity. Longer work zones often indicate
more intensive work activity and display more traffic signs causing travelers to drive more
cautiously. A lower speed limit is often enforced in the work zone to improve safety which

decreases the work zone capacity.

Ramps proximity to the work zone, especially the entrance ramps inside the work zone
activity area, can create traffic turbulence resulting in a reduction in the work zone capacity.
The HCM (2000) suggests an adjustment for ramps without actually providing any modification
factors. Again, the issue is left for the work zone engineer to decide subjectively based on his/her
experience. Al-Kaisy et al. (2000) suggest that both duration of work zone and driver
composition can affect the work zone capacity. The average capacity at long-term freeway work
zones is greater than that at short-term work zones because the commuters and frequent travelers

become familiar with the configuration of the long-term work zone.

The workday (weekdays or weekends) and work time (daytime or night) also affect the
work zone capacity. In all likelihood commuters and regular travelers during the weekdays are
more familiar with the configuration of the work zone and the traffic control plans in the affected
areas (e.g. route diversion) than non-commuters (e.g. tourists) traveling during the weekends.
Night construction on the one hand can help increase the work zone capacity by avoiding traffic
congestion during peak hours, and on the other hand can decrease the work zone capacity

because of the reduced travelers’ attention (Al-Kaisy and Hall 2001).
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Weather (snowy, rainy, or sunny) and pavement conditions will have a significant impact
on the work zone capacity. The HCM (2000) suggests 10 to 20 percent capacity reductions due
to bad weather conditions without providing any specific guidelines. Again, the issue is left for
the work zone engineer to decide subjectively based on his/her experience or professional
judgment. Similarly, wet or icy pavement surface in the work zone forces the travelers to lower
their speed in the work zone, which reduces the work zone capacity. The HCM (2000) provides

no guidelines in this regard.

Symbolically, the work zone capacity can be expressed as a function of 17 variables

defined in the previous paragraphs:

y=f(x, Xy, X) (1)

The work zone capacity cannot be described by any mathematical function because it is a
complicated and non-quantifiable function of a large number of interacting variables some of

which are linguistic.
VARIABLE QUANTIFICATION AND NORMALIZATION

In the new work zone capacity estimation model, some of the variables are linguistic such
as work zone layout and weather conditions, some are binary two-valued parameters such as the
interchange effect representing the existence of ramps near or within work zone, and others are
numeric such as the work zone length. Spline-based nonlinear functions are used to quantify
each linguistic as well as binary-valued variable mathematically. Spline-based nonlinear
functions are also assigned to numeric variables in order to model the impact of their variations
on the work zone capacity. These functions play another role, that is, to normalize the variables

into the same range, 0 to 1. This normalization is desirable in the fuzzy inference mechanism
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developed in this work. The normalization prevents the undue domination of variables with large
numerical values over the variables with small numerical values, thus improving the
convergence of the network training. Compared with the conventional linear data normalization,
the nonlinear normalization using spline-based functions represents the data variation more

accurately.

Integer numbers are used to quantify the linguistic and binary-valued variables. Numbers
1, 2, and 3 are used to represent the three types of layouts (lane merging, lane shifting, and
crossover), weather conditions (sunny, rainy, or heavy snowfall), and pavement conditions (dry,
wet, or icy). Numbers 1 and 2 are used to represent the work zone location (urban or rural), work
zone duration (short-term or long-term), work time (day or night), and day of week (weekday or
weekend). Numbers 1 and 2 are also used to represent the binary-valued variables interchange
effect (1 for no ramp and 2 for existence of ramp), driver composition (1 when it is not
considered and 2 when it is considered), and pavement grade (1 when there is no grade and 2 for
existence of grade). Numbers from 1 to 6 are used to represent the work intensity as defined in
Table 1. Numbers from 1 to 7 are used to represent the seven localities where data are collected

(Data used in this research are collected from six different states and the city of Toronto).

The normalized spline-based nonlinear functions for variables 1 to 17 are shown in
Figure 1. The value of each normalized function varies from 0 to 1. For variables x; (percentage
of truck), x, (pavement grade), xs (number of lanes), x4 (number of lane closures), Xs (work zone
layout), x; (work intensity), xio (interchange effects), x1; (work zone location), x3» (work zone
duration), x;3 (work time), x14 (work day), x5 (weather condition), xi6 (pavement condition), X;7
(driver composition), and xig (data collection locality), an S-shaped spline-based nonlinear

function is used, as defined by the following equation (Figure 1a):
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g, = 1—2{1”'_)“') if%<xi<b[ i=1t04,6,7,10t0 17 )

where b; is the upper bound for variable x;. The upper bound is different for various input
variables. The values of the upper bound used in this work for various variables are summarized
in Table 2. When no data are available for any particular variable x;, the value of that variable is
entered as zero in the S-shape spline function, Eg. (2), resulting in a corresponding value of zero

for q;.

For variables xs (lane width), xg (length of closure), and xg (work zone speed), a Z-shaped

spline-based nonlinear function is used, as defined by the following equation (Figure 1b):

1 if x, <a,
’ +b
g =11-2/ 574 ifg <x <4 i=5,8,9 3)
1 al—bl 1 1 2
2
2 b =%, if a"+bi<xl.<bl.
a;, — b, 2

where a; and b; are the lower and upper bounds for variable x;. Note that for the three variables
lane width, length of closure, and work zone speed, a Z-shape spline function is used instead of
an S-shape spline function to reflect the fact that an increase in the value of these variables
increases the work zone capacity. Further, in contrast to the S-shape spline function, Eq. (2), the
Z-shape spline function, Eqg. (3), is a function of a non-zero lower limit. The lower and upper

bound values used in this work for variables xs, Xs, and xg are summarized in Table 2. When no
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data are available for variable x; (i = 5, 8, 9), the corresponding upper bound is entered in the Z-

shape spline function, Eq. (3), resulting in a value of zero for g;.

The work zone capacity is also normalized to the range of zero to one using the following

linear function:

Cn = (C -C )/(Cmax - Cmin) (4)

min

where C, is the normalized work zone capacity, and C,,, and C,, are, respectively, the

minimum and maximum work zone capacity values for all the training data set.
NEURO-FUZZY MODEL FOR WORK ZONE CAPACITY ESTIMATION

An adaptive neuro-fuzzy model is developed for the nonlinear mapping of the inputs
described earlier and the output, the freeway work zone capacity, incorporating fuzzy logic and
neurocomputing concepts. Fuzzy logic is an effective approach for representing a) imprecision
and b) linguistic variables (Adeli and Hung, 1995; Adeli and Park, 1998; Zadeh, 1978). Neural
network algorithms are powerful in providing solutions to complex pattern recognition problems
where an analytical solution cannot be found (Adeli 2001; Adeli and Hung 1995; Adeli and
Karim, 2001). In the neuro-fuzzy model for work zone capacity estimation, a backpropogation
neural network is employed to estimate the parameters associated with the membership functions

used in the fuzzy inference mechanism.
Fuzzy Inference Mechanism

A fuzzy logic inference mechanism is employed using a set of IF-THEN fuzzy

implication rules in the following form (Sugeno and Kang, 1988):
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IF 14,114y, AND 11,,:¢,, AND, ., AND 5" q;s THEN C, =C,> (¢,14,,(q;)) i=1---N (5)
=

where g,,...,q,, are the 18 normalized input variables defined by Egs. (2) and (3), 4, ; is the

membership function or the degree of membership of variable ; in the i-th fuzzy implication rule,

4; ;- q; indicates the degree of membership of ¢, is w,;, C, is the value of the work zone

capacity obtained from rule i, C, is the normalized measured work zone capacity defined from

Eq. (4), and N is the total number of fuzzy implication rules.

In this work, a bell-shaped Gaussian function is used for the membership function in the

following form:

yi’j(qj)=exp[—(qj2_—czij)] i=1,..,N j=1..18 (6)

O

where ¢, and o represent the center and the half-width of the membership function for the j-th

variable and i-th fuzzy implication rule. The former determines the position of the function and

the latter determines its shape.

The total number of fuzzy implication rules, », is equal to the number of clustering
centers for any given training data set. We use a subtractive clustering approach to determine
the number of clusters and clustering centers. In this approach, it is assumed that each data point
belongs to a potential cluster based on the minimum value of a predefined objective function.
The approach is explained pictorially for a two-dimensional (two-variable) case in Figure 2. In
this work, an exponential data density measure is used as the objective function in the following

form (Chiu 1994):
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q, — 0,

f(o,):iexp[—4 J /[=1,...,N (7)

where ||X||:,/Z:18|X,.|2 is the Euclidean distance, q, is the 18 x1 vector of the k-th input data

set, o, is the 18x1 vector of potential cluster data centers, and r is the 18 x1 vector of
predefined data cluster radii. Since all data have been normalized to the range 0 to 1, a constant
value of r, in the range of 0 to 1, is chosen for all the radii corresponding to various variables.
This is another advantage of normalizing the data. Without such normalization different values
have to be chosen for various radii. At the beginning, K is equal to the total number of training
data sets, M. In other words, we start with K cluster centers and compute K different values for
the data intensity measure or the objective function defined by Eq. (7) (Figure 2a). The data set
yielding the smallest objective function is selected as the first cluster and is excluded from
further processing. Next, the subtractive clustering algorithm is applied to the remaining data
points that do not belong to any cluster, or the subtracted set, and the second cluster is identified
(Figure 2b). This process is continued, finally resulting in N clusters. The selection of the data
cluster radius (a value between 0 and 1) is a trial-and-error process. A smaller value of the
cluster radius leads to a larger number of clusters requiring more computational resources for
training the network and vice versa. The number of clusters should be just large enough to

provide accurate results.

In Eq. (6), the initial values of the membership function centers for the ith fuzzy
implication rule, ci; to Ciig, are set to the values of the clustering data centers 0; to 05, and the

initial values of o, are determined from

0; =7 (Gimex ~4jmn) (=1, ...N j=1,.18 (8)
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where r, the cluster center's radius, represents the influence range of the variable, and ¢, ., and
q;mn are the maximum and minimum values of the j-th variable among all training data sets,

respectively. The standard deviations of g; in the membership function, Eqg. (6), may be used to

estimate the initial values of o . In this work, however, Eq. (8) is used instead in order to speed

up the training convergence of the model.

For the fuzzy inference mechanism, any fuzzy implication rule i performs an AND
operation, that is, multiplying the degrees of membership function of all the variables and

finding the following output:
18
Wi:H:Ui,j(q]') i=1,...N ©)
J-1

This output represents the firing strength of the i-th fuzzy implication rule. The estimated work

zone capacity, C, is obtained from the fuzzy inference mechanism as the aggregation (or

summation) of the outputs of N fuzzy implication rules as follows:

C= ﬁ:c i (10)

Topology of the Neuro-Fuzzy Model

Figure 3 shows the topology of the neuro-fuzzy inference model for estimating the work
zone capacity. It consists of an input layer, a fuzzy implication layer, and an output layer. The
input layer has 18 nodes representing the 17 variables defined in the previous section and an 18"

node to indicate the data collection locality. The values of the variables in the input layer are
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quantified and normalized to values between 0 and 1, employing the S-shape and Z-shape

Spline-based nonlinear functions described earlier.

The fuzzy implication layer consists of two sub-layers. The first (left) sub-layer represents
the fuzzy membership function layer, where every node represents one Gaussian membership

function (g, ;). The number of nodes in this sub-layer is equal to 18N. Each membership

function is used to map one normalized input variable to one cluster. The second (right) sub-
layer consists of N nodes representing N fuzzy AND operations. The output layer has only one
node that performs the fuzzy aggregation (summation) operation. The output of this node is the

estimated work zone capacity.
Training the Neuro-Fuzzy Model

The fuzzy inference mechanism presented in a previous section requires estimation of the

parameters c¢; and o, associated with the membership functions. In this work, the parameters

are adjusted using the backpropogation (BP) neural network-training algorithm.

A mean squared error function, E(c;,o;), is defined as the average of the squared

[j )
differences between the measured and estimated work zone capacity values over all the training

data sets:

M ~ 12
E(CU,GU.)=%Z‘C£—CI“ i=1,...N j=1,.,18 (11)
k=1

where C* and C* are the k-th normalized measured and estimated work zone capacity values,

respectively.
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In this work, the parameters ¢, and o, are updated after a// the training data sets are

applied. In other words, a training iteration or epoch is based on all the training data sets. The

adjustment is given by the following equation:
N k Ak :
I/Vij,new :VVij,oId +Z77(Cn -C )C]j ] = 1, ..., 18 (12)
k=1

where W, ={c;,o;} (i=1, ..., N) represents the parameter set of the membership function, 4, ;,

for the j-th variable and i-th fuzzy implication rule, and #» is the learning ratio.

The generalization capability of the neuro-fuzzy model demonstrates how accurately it
can estimate the work zone capacity with a new data set. In training the network, one has to be
cognizant of the over-generalization problem, also known as over-fitting problem in the statistics
literature. In this work, rather than simply minimizing the error as defined by Eq. (11) we
employ an optimum generalization strategy in order to avoid over-generalization and achieve the
most accurate results. This is done by dividing the available data sets for training into two
groups: a training group and a checking group. The latter consists of only a fraction, in the order
of 10-20%, of the total data sets available for training chosen randomly. The mean squared error
term for the training set normally decreases with the number of iterations, as noted by
convergence curve A in Figure 4. In each iteration of the training stage, the trained network is
used to estimate the work zone capacity for each set of the checking data sets and their mean
squared error is computed. The variation of this mean squared error with the iteration number of
the training set is normally a concave curve with a minimum (curve B in Figure 4). The iteration
number corresponding to the minimum point on this curve is where the training of the network is

stopped; the values of the membership function parameters obtained at this iteration provide the
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optimum generalization results. As observed in Figure 4, at iterations beyond the minimum point
of curve B, the mean squared error in the checking set increases indicating the over-

generalization of the network.

After training of the neuro-fuzzy work zone capacity estimation model using the
optimum generalization strategy, a third group of data sets, the testing data sets, are used to

evaluate the model.
DATA COLLECTION FOR TRAINING, CHECKING, AND TESTING THE MODEL

Data for training, checking, and testing of the model were collected from the existing
literature and augmented by four data sets provided by the Ohio Department of Transportation. A
total of 168 data sets were collected including 9 sets from the state of North Carolina (Dixon and
Hummer, 1995), 79 sets from Texas (Dudek and Rochards, 1981; Krammes and Lopez, 1994),
17 sets from California (Krammes and Lopez, 1994), 12 sets from Indiana (Jiang, 1999), 12 sets
from Maryland (Kim et al., 2001), 4 sets from Ohio, and 35 sets from Toronto, Canada (Al-
Kaisy and Hall, 2001), as summarized in Table 3. None of the data set includes all the 17 input
variables used in the new computational model. The number of input variables provided ranged
from four (number of lanes, number of lane closure, work zone intensity, and work zone
duration) to fourteen (percentage of heavy trucks, grade of pavement, number of lanes, number
of lane closure, work zone intensity, length of closure, work zone speed, proximity of ramps to
work zone, work zone location, work zone duration, work time, work day, weather conditions,
and driver composition). For those unavailable input variables, values of zero are obtained after

variable quantification and normalization, as described earlier.
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The 168 data sets summarized in Table 3 are divided into three parts: 133 sets are used for
training, 21 sets are used for checking, and finally 14 sets are used for testing the neuro-fuzzy

work zone capacity estimation model.
TRAINING AND TESTING THE NETWORK

After trying several different values, a value of 0.1 was selected for the learning ratio, 7,

and a constant value of 0.3 for the cluster center's radii, r, for various variables. The number of
clusters resulting from the subtractive clustering approach is 11, which is set to the number of
fuzzy implication rules, N. In other words, every input node in the network topology presented in
Figure has 11 membership functions. Convergence results for training the network based on 133

training data sets and 21 checking data sets are displayed in Figure 5a.

Figures 6a and 6b show the normalized measured and estimated work zone capacity values
for checking and testing data sets, respectively. There exist four and three outliers in the
checking and testing data sets, respectively. In this work, an outlier is defined as any point with
an error value 50% larger than the mean error for all the data points. There are three explanations
for the existence of outliers: measurement error, inhomogeneity in the collected data (that is, data
collected in one state may not be representative of data collected in another state), and
lopsidedness of the data set (that is, some input variables are observed in a small number of data
sets and other input variables are observed in a large number of data sets). Table 3 shows that a
large number of training data sets are available from Texas (66), Toronto (29), and California

(14), but only two training data sets are available from Ohio.

To improve the estimation accuracy of the new neuro-fuzzy model, the training data set

are modified or de-noised to make them more representative of actual conditions. First, the data
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sets yielding outliers are deleted (in the example presented in Figure 6, the outliers are from the
three localities with the most data, that is, Texas, Toronoto, and California). Next, roughly the
same numbers of training and checking data sets are chosen from various localities randomly and
the network is re-trained. If outliers are observed again after the second training the outlier data
sets are replaced with new remaining data sets from the same locality and the network is trained
again. This process is continued until there is no outlier. For the example presented in Table 3,
the final de-noised data set are presented in Table 4 which includes roughly the same number of
data sets for each locality except Ohio where only limited measured work zone data are available
at the time of this writing. Convergence results for training the network based on the reduced and
de-noised training data sets are displayed in Figure 5b, which indicates a substantial reduction in
the error as well as a faster convergence. Figures 7a and 7b show the normalized measured and
estimated work zone capacity values for checking and testing data sets, respectively, using the
reduced data set. It is important to note that the mean squared values in Figure 7 using the
reduced data set is more than an order of magnitude smaller than the values in Figure 6 using the
raw data. This large reduction in the error indicates a significant improvement in the accuracy for

estimating the work zone capacity.

After training of the neuro-fuzzy work zone capacity estimation network using the de-
noised data sets, the parameters of the Gaussian membership functions corresponding to 18
variables and 11 clusters are obtained and the corresponding membership functions are
computed. As an example, Figure 8 shows the eleven different bell-shape Gaussian membership

functions for the normalized input variable ¢, (percentage of trucks).

MEASURING THE ACCURACY OF THE ESTIMATED WORK ZONE CAPACITY
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In order to evaluate the accuracy of the new model, it is compared with two approximate
empirical equations using the 10 sets of testing data given in Table 4. The input values for the 10

data sets are summarized in Table 5.

Krammes and Lopez’s (1994) proposed the following empirical equation for estimating the

work zone capacity:
C =(1600pcphpl + 7 —R)x H x N, (13)

where C = work zone capacity (vph), I = adjustment value for work intensity ranging from -160
to 160 passenger cars per hour per lane (pcphpl), R = adjustment value for presence of ramps, H
= adjustment factor for heavy vehicles given as a function of two parameters: proportion of
heavy vehicles and passenger-car equivalent for heavy vehicles given in HCM (2000), and N, =
number of open lanes in the work zone. Equation (13) adjusts a single base capacity value of
1,600pcphpl based on the effects of the intensity of the work activity, percentage of heavy
vehicles, and presence of entrance ramps near the starting point of the lane closure. Similar to
broad guidelines for work zone capacity estimation in HCM (2000), the values of various

adjustment values are left for the work zone engineer to choose based on prior experience.

Kim et al. (2001) suggest the following empirical equation for work zone capacity based on
multiple-variable regression analysis of 12 sets of measured work zone capacity values obtained

in the state of Maryland:

C =1857 -168.1N, —37.0L_ —9.0H, +92.7L, —-34.3L, —106.11, —2.3G, x H,  (14)

where N. =number of lane closures in the work zone, L. = location of closed lanes (right = 1,
otherwise =0), H, = percentage of heavy vehicles, L, = lateral distance to the open lane, L,, =

work zone length, /,, = work intensity, and G,, = work zone grade.
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The work zone capacity estimates obtained by the new adaptive neuro-fuzzy model as well
as two empirical equations (13) and (14) are summarized in Table 6. The root mean squared
(RMS) error value obtained for the new nuero-fuzzy model, 127, is substantially lower than the
RMS values 267 and 358 obtained for Kim et al. (2001) and Krammes and Lopez (1994)
equations, respectively. The error percentage between the estimated and measured work zone
capacity values ranges from 0.9 to 13.5 for the new neuro-fuzzy model (less than 10% with the
exception of one), compared with 0.2 to 21.8 for the empirical equation presented by Kim et al.

(2001), and 0.1 to 23.1 for that of Krammes and Lopez (1994).

Figure 9 shows a comparison of the estimated (é) and measured work zone capacity (C)

N

values in terms of number of open lanes. The solid line represents C, =C,, that is perfect

correlation. The slight departure of the scattered dots representing the estimated work zone
capacity from the ideal line indicates high estimation accuracy of the new neuro-fuzzy model.

CONCLUSION

A novel neuro-fuzzy freeway work zone capacity estimation model is presented in this
article using fuzzy logic and neurocomputing concepts. A backpropogation neural network is
employed to estimate the parameters associated with the bell-shaped Gaussian membership
functions used in the fuzzy inference mechanism. The network has been trained using measured

data obtained from six different states and city of Toronto in Canada.

Comparisons with two empirical equations demonstrate that the new model in general
provides a more accurate estimate of the work zone capacity, specially when the data for factors
impacting the work zone capacity are only partially available. The new model provides two
important additional advantages over the existing empirical equations. First, it incorporates a

large number of factors impacting the work zone capacity. Second, unlike the empirical
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equations, the new model does not require selection of various adjustment factors by the work
zone engineers based on prior experience. The new model can be implemented into an intelligent
decision support system a) to estimate the work zone capacity in a rational way, b) to perform
scenario analysis, and c¢) to study the impact of various factors influencing the work zone
capacity.
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Table 1. Categories of work intensity in work zones used in the new model

Intensity level

Qualitative description

Work type examples

1 Lightest Median barrier Installation or repair
2 Light Pavement repair

3 Moderate Resurfacing

4 Heavy Stripping

5 Very heavy Pavement marking

6 Heaviest Bridge repair
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Table 2 Upper and lower limit values used in this work for various variables g;

Normalized Description Variable type Upper Lower
Variable bound bound
01 Percentage of truck Numeric 25%
02 Pavement grade Binary 2
03 Number of lanes Integer 6
O4 Number of lane closure Integer 5
Os Lane width Numeric 12m 8m
(o]3 Work zone layout Linguistic/Integer 3
g7 Work intensity Linguistic/Integer 6
Os Length of closure Numeric 5 km 0.5 km
Qo Work zone speed Numeric 60 km/hr | 20 km/hr
10 Interchange effects Binary 2
Ju1 Work zone location Binary 2
J12 Work zone duration Binary 2
O13 Work time Binary 2
Q14 Work day Binary 2
J1s Weather condition Linguistic/Integer 3
J16 Pavement condition Linguistic/Integer 3
017 Driver composition Binary 2
O18 Data collection locality Integer 7
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Table 3. Raw data for training, checking, and testing the model

State Index — 168 data € s -
Training Checking Testing
California 1 14 2 1
Indiana 2 8 2 2
Maryland 3 8 2 2
North Carolina 4 6 2 1
Ohio 5 2 1 1
Texas 6 66 9 4
Toronto 7 29 3 3
Total 133 21 14

Table 4. De-noised data for training, checking, and testing the model

State Index — 67 data sgts -
Training Checking Testing
California 1 6 1 1
Indiana 2 8 2 2
Maryland 3 8 2 2
North Carolina 4 6 2 1
Ohio 5 2 1 1
Texas 6 8 2 2
Toronto 7 8 1 1
Total 46 11 10
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Table 5 Input values for 10 work zone scenarios used to test the neuro-fuzzy work zone capacity estimation model

Var. | X X2 X3 X4 Xs X X7 Xg Xg X10 X11 X12 X13 X14 X1i5 X16 X17 X1

No. | No. of Length .
Data | Truck | Grade of Lane Lgne Layout Worlf of |Speed Ramp | Location Work Work Work day Weather | Pave. | Driver State
set | (%) | (%) lanes | closures Width Intensity | closure | (mph) dur. | time Cond. |Cond. | comp.

(m)

1 - - 3 1 - - 3 - - - - Long - - - - - California
2 32 - 2 1 - M 6 11.7 - - Rural Long | Day | Weekday - - - Indiana
3 10 - 2 1 - C 2 11.7 - - Rural Long | Day | Weekday - - - Indiana
4 8 5 4 1 - - 1 0.18 30 | Yes | Urban Short | Day | Weekday | Sunny - 0 Maryland
5 8.5 0 4 2 - - 6 2.2 21 | Yes | Urban Short | Night| Weekday | Sunny - 0 Maryland
6 - - 3 1 12 M - 0.6 - No - Short | Day | Weekend | Sunny - - Ohio
7 | 26.2 - 2 1 - - 6 - - - Rural Long | Day | Weekday - - - N. Carolina
8 - - 4 1 - - 1 - - - - Short - - - - - Texas
9 - - 5 3 - - 3 - - - - Short - - - - - Texas
10 - 3 3 1 - - - - - - Urban Short | Day - Sunny | Dry 1 Toronto

M = Merging, C = Crossover,

- Unavailable data
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Table 6 Comparison of the work zone capacity estimates obtained from the new neuro-fuzzy model with two empirical equations

Data set| Open ] A
p Measured Krammes and Lopez Kim et al. (2001) Neuro-fuzzy model (C,)
State ci;%iid values (Cj) (1994) (vph)
number | lanes (vph) Values Error (%) Values | Error Values Error
(vph) (vph) (%) (vph) (%)
California 1 2 1 2600 3200 23.1 3166 21.8 2364.4 9.1
indiana 2 1 1 1308 1307 0.1 1295 1.0 1395.7 6.7
3 1 1 1595 1362 14.6 1464 8.2 1810.2 135
Maryland 4 3 1 5205 4545 12.7 4695 9.8 5342.6 2.6
5 2 2 2456 3020 23.0 2451 0.2 2687.1 9.4
North Carolina 6 1 1 1284 1536 19.6 1471 14.6 1272.2 0.9
Ohio 7 2 1 3318 3200 3.6 3378 1.8 3414.8 2.9
Texas 8 3 1 4590 4800 4.6 5067 10.4 4644.5 1.2
9 2 3 2680 3200 19.4 2705 0.9 2899.8 8.2
Toronto 10 2 1 3904 3200 18.0 3378 13.5 3779.4 3.2
1 ~
(¢, =€) 358 267 127
Root mean square |/
10
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a) S-shaped

b) Z-shaped

Figure 1 Spline-based nonlinear functions used to quantify and
normalize the variables
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Figure 3 Topology of the neuro-fuzzy model for estimating the work zone capacity
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Figure 4 Procedure to find the point of optimum generalization

159

v



Mean squared error

Mean squared error

0.6

Stop at 23" epoch
_________________ .___________________________
0.0 ! I I
1 10 20 30 40
Iteration number (Epoch)
a) Raw data sets
0.04
003 L
0.02 L
Stop at 16™ epoch
0.01 l
0.0 ——= _ == —
1 10 20 30 40

Iteration number (Epoch)

b) Improved data sets

------ Checking data sets

——  Training data sets
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Figure 6 Normalized measured and estimated work zone capacity values for checking and testing
data sets using the raw data (MSE= mean squared error)
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Figure 7 Normalized measured and estimated work zone capacity values for checking and testing data

sets using the de-noised data (MSE= mean squared error)
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INTELLIZONE: An Object-Oriented Model for Freeway Work Zone
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INTELLIZONE: AN OBJECT-ORIENTED MODEL FOR FREEWAY WORK
ZONE CAPACITY AND QUEUE DELAY ESTIMATION

Xiaomo Jiang® and Hojjat Adeli™

ABSTRACT: Existing computer models used to estimate queue delay upstream of
the work zone have a number of shortcomings. They do not provide any model to
estimate work zone capacity, which has a significant impact on the congestion and
traffic queue delays. They cannot be used to perform scenario analysis for work zones
with various characteristics such as work zone layout, number of closed lanes, work
intensity and work time. In this article, an object-oriented (OO) model is presented
for freeway work zone capacity and queue delay and length estimation. The model is
implemented into a interactive software system, called IntelliZone, using Microsoft
Foundation Classes (MFC) and a hierarchy of multiple specialized frameworks. A
three-layer application architecture is created to separate the application functions
and classes from MFC classes. The high-level application domain layer is divided
into packages.  IntelliZone’s capacity estimation engine is based on pattern
recognition and neural network models incorporating a large number of factors

impacting the work zone capacity. This research provides the foundation for a new
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generation of advanced decision support systems for effective management of traffic

at work zones.

INTRODUCTION

Highway agencies are increasingly focusing attention on reconstruction and
improvement of the existing highway systems in the United States due to the aging
highway infrastructure. Freeway work zones have become a major source of traffic
congestion and travelers’ delays which result in reduced freeway capacity, increased
driver frustration, increased traffic accident, increased road user delay cost, and increased
fuel consumption and vehicle emissions. Thus, highway agencies are facing with the
challenging problem of effectively planning and managing the work zone to ameliorate
its effects on the vehicular traffic. They often use the empirical and highly approximate
method described in the Highway Capacity Manual (HCM) (HCM, 2000) to determine
the freeway work zone capacity and to estimate the travelers’ queue delays with lane
closures. The HCM provides a base capacity of 1600 vehicles per hour per lane (vphpl)
for short-term ideal highway work zones. Guidelines are given on how to modify the base
value to take into account percentage of trucks, work intensity, proximity of ramps, and
lane widths. However, many other additional factors, neglected in the HCM guidelines,

affect the freeway work zone capacity estimation (Adeli and Jiang, 2003)

To assist highway agencies to create an effective traffic management plan (TMP)
for a given work zone, a few models have been proposed to estimate the queue length and
travelers’ delay associated with work zones. Memmott and Dudek (1984) estimate the

road user delay costs based on the average speed and average daily traffic (ADT) in
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freeway work zones. Using the deterministic queuing analysis approach and the
conservation principle of traffic flow, they developed a computer program named
QUEW?Z for Queue and User Cost Evaluation of Work Zones to estimate the user costs
and queue length for a work zone in the state of Texas. However, the work zone capacity
is estimated from empirical speed-flow-density relationships independent of the work

zone characteristics such as work zone layout and work intensity.

A Microsoft Excel-based model has recently been developed for predicting the
work zone delay, called QuickZone, based on the deterministic queuing model for each
network link in the work zone (MITRETEK, 2001). QuickZone estimates the hourly
delay taking into account the expected time-of-day utilization and seasonal variation in
travel demand. QuickZone, however, does not have a work zone capacity estimation
model. Rather, it requires the value of the work zone capacity as input. The accuracy of
the traffic delay estimates by QuickZone depends heavily on an accurate estimation of

the work zone capacity.

The ideal goal of an effective TMP is to minimize travelers’ delays and
construction and operation costs while enhancing the safety of the travelers and highway
workers. As such, an accurate estimation of the work zone capacity and travelers’ queue
length is of paramount importance for creating an effective work zone TMP. However,
the existing computer models such as QUEWZ and QuickZone used to estimate queue
delay upstream of the work zone have a number of shortcomings. They do not provide
any model to estimate work zone capacity, which has a significant impact on the

congestion and traffic queue delays. They cannot be used to perform parametric or
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scenario analysis for work zones with various characteristics such as work zone layout,
number of closed lanes, work intensity and work time.

To overcome these shortcomings, the senior author and his associates have recently
developed a number of computational models for accurate estimation of work zone
capacity and traffic queue delays using computational intelligence approaches such as
neurocomputing (Adeli and Hung, 1995; Adeli and Park; Adeli and Karim, 2001), fuzzy
logic, and case-based reasoning (CBR). Karim and Adeli (2002) present a CBR model for
freeway work zone traffic management. The model considers work zone layout, traffic
demand, work characteristics, traffic control measures, and mobility impacts. A four-set
case base schema or domain theory is developed to represent the cases based on the
above characteristics of the problem. Three examples are presented to show the practical
utility of the CBR system for work zone traffic management. Jiang and Adeli (2002)
present a new freeway work zone traffic delay and cost optimization model in terms of
two variables: the length of the work zone segment and the starting time of the work zone
using average hourly traffic data. The total work zone cost defined as the sum of user
delay, accident, and maintenance costs is minimized. Number of lane closures, darkness
factor, and seasonal variation in travel demand normally ignored in prior research are
included. In order to find the global optimum solution, a Boltzmann-simulated annealing
neural network is developed to solve the resulting mixed real variable-integer cost
optimization problem for short-term work zones.

Karim and Adeli (2003) present an adaptive computational model for estimating the
work zone capacity and queue length and delay taking into account the following factors:

number of lanes, number of open lanes, work zone layout, length, lane width, percentage
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trucks, grade, speed, work intensity, darkness factor, and proximity of ramps. The model
integrates judiciously the mathematical rigor of traffic flow theory with the adaptability
of neural network analysis. A radial-basis function neural network model is developed to
learn the mapping from quantifiable and non-quantifiable factors describing the work
zone traffic control problem to the associated work zone capacity. Queue delays and
lengths are computed using a deterministic traffic flow model based on the estimated

work zone capacity.

In this article, an object-oriented (OO) model is presented for freeway work zone
capacity and queue delay estimation. The model is implemented into a highly interactive
software system, called IntelliZone (Intelligent decision support system for work zone
traffic management). The integration of the modeling, control and decision support
features is described.

FUNCTION ARCHITECTURE

Since 1991, the senior author and his associates have advanced the use of OO
technology for development of flexible, maintainable, and reusable software systems for
computer-aided engineering (CAE) applications (Yu and Adeli, 1991, 1993; Adeli and
Yu, 1993; Adeli and Kao, 1996; Karim and Adeli, 1999a, b). The object in the OO
technology is a “black box” which abstracts a real world entity by encapsulating its
characteristics (data and functionality). Abstraction means identifying the distinguishing
characteristics of an object without having to process all the information about the object.
Encapsulation is an OOP mechanism that combines data into codes and prevents data and
codes from outside interference and misuse. The additional two mechanisms provided by

OOP languages (e.g., Visual C++), inheritance (the process by which the object of one
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class acquires the properties of another class) and polymorphism (a feature that allows
one interface to be used for a general class of actions), allow easy extension and
reusability of previously developed objects. The properly integrated application of
polymorphism, encapsulation and inheritance provides efficient development and

management of a complicated software system.

Figure 1 shows the function diagram of IntelliZone. It consists of four interaction
stages: input, analysis, output, and TMP stages. In the input stage, the user can select up
to seventeen input parameters for work zone capacity estimation (noted in the left-upper
box of Figure 1). For traffic delay and queue estimation, up to four additional parameters
may be identified in the input stage (noted in the left-lower box of Figure 1). Work zone
capacity is estimated by IntelliZone. 1t is also included in the list of input parameters for
the sake of generality and to allow the user to input any predefined number (e.g., based
on actual measurements at a particular work zone) or modify the estimated value

provided by IntelliZone.

The work zone capacity cannot be mathematically modeled because it is a
complicated and non-quantifiable function of a large number of interacting variables
some of which are linguistic (e.g. work intensity). The computational model for work
zone capacity is the radial basis neural network model presented in Karim and Adeli
(2003). However, the number of influencing factors considered is increased from eleven
to seventeen. Further, the simple backpropagation (BP) neural network algorithm (Hagan
et al., 1996) is also provided as a second alternative approach for estimation of work zone
capacity. The queue delay and length estimation model is described in Jiang and Adeli

(2003).
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To improve the accuracy of estimation and accelerate the convergence speed of the
neural network model, the values of the seventeen input variables for work zone capacity
estimation are quantified and normalized to values between 0 and 1 employing the S-
shape and Z-shape spline-based nonlinear functions described in Adeli and Jiang (2003).
The normalization prevents the undue domination of variables with large numerical
values over the variables with small numerical values, thus improving the convergence of
the network training in estimating work zone capacity. Compared with the conventional
linear data normalization, the nonlinear normalization using spline-based functions

represents the data variation more accurately.

IntelliZone provides three different types of output (Figure 1). The convergence
results of neural network training can be viewed graphically. Similarly, the hourly queue
length is presented graphically. A report output can be created where the work zone input
and output information is summarized along with the results of the queue delay and
length estimation. The hourly queue length plot assists the work zone engineer to modify
the work zone traffic management plan and perform scenario analysis efficiently. For
example, if the queue length within a given period of the day exceeds the acceptable
limit, the work zone engineer can improve the work zone TMP by changing the work
zone schedule (e.g., by changing the work time to avoid the traffic peak), or changing the

work zone layout to increase the work zone capacity.

Figure 2 shows how an effective TMP can be created for a particular work zone
using IntelliZone interactively.

APPLICATION ARCHITECTURE
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The prototype software system IntelliZone is based on the object-oriented software
architecture using Visual C++ and the Microsoft Foundation Class (MFC) library. Design
of a complex OOP software system usually requires the hierarchical use of multiple
specialized frameworks. A framework is a collection of cooperating classes relevant to a
specific domain (templates used to create multiple objects with similar features).
Furthermore, the dependencies among the frameworks must be clearly delineated to
avoid any conflicts. In this work, a layered approach (Baumer et al., 1997, and Karim and
Adeli, 19993, b) is used to separate the application functions and classes of IntelliZone

from MFC classes, thus allowing for ease of development and maintenance.

The application architecture for constructing an object-oriented intelligent decision
support system for work zone management is shown schematically in Figure 3. Three
levels of abstractions are modeled in layers. The outermost layer is the MFC shell layer.
It is a framework created from the standard MFC library which encapsulates the most
common functionality of the Windows Application Programming Interface (API) into an
0O interface. The other two layers depend on and use the services of this shell layer.
Typically, the shell layer provides commonly used data structures, mathematical
functions, client/server middleware (low-level transaction management software), and
request brokers (software that manages cooperation and communication among
heterogeneous software components). The shell layer is closely connected to the
Windows operating system, and its implementation in the form of a framework is

available on various Windows operating systems.

Depending on the shell layer is the productivity layer (the middle layer in Figure 3).

In this work, it is subdivided into database and user-interface layers. The database layer
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provides an interface to the applications for data management, storage, and retrieval,
including generating report document, processing data, and utilizing the existing
databases. The frameworks in the user-interface layer aid in the design of user-friendly
interactive interfaces. All input and output in the software are communicated through the
user-interface layer. Depending on both the shell and productivity layers are the
application domain layer. Generally, this layer contains algorithms and computational
models for the solution of specific problems in the domain. It is usually subdivided to
further categorize and generalize the application domain requirements. One or more
frameworks may be used to implement this layer. In this work, four application
frameworks are created in the domain layer to represent input variable
quantification/normalization, traffic demand computation, work zone capacity estimation,

and travelers’ queue delay estimation.

Figure 4 shows the IntelliZone application architecture for freeway work zone traffic
management in the form of a package diagram. This diagram shows the breakdown of the
application into packages and their dependencies. Generally, a package is a collection of
related software elements, which may be classes, components, or frameworks. In this
work, the packages represent a collection of classes. In Figure 4, the dashed-line arrows
indicate the dependency of a package on another. A software dependency exists if any

change in a package requires a change in the dependent package.

The high-level application domain layer is divided into two packages: an Application
package and a Domain package. The Application package consists of the Model package
and the User interface package. The Model package in turn contains four packages for

input variable quantification/normalization, work zone capacity estimation, traffic
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demand computation, and travelers’ queue delay estimation. The Domain package
contains two software packages, one for work zone scenario design and modification and
the other for displaying queue length at various hours of the day. The Application and
Domain software packages depend on the Graphics package, File and database support

package, and Miscellaneous support package of the MFC library.

The execution of packages is controlled by an MFC class, CObject, which has global

dependency.
CLASS DIAGRAM

IntelliZone is designed to run under all 32-bit Microsoft Windows environments such
as Microsoft Windows 95/98/2000 and Windows NT 4.0 or above version. Figure 5
shows the main classes for the controlling class, CObject, used in IntelliZone. Five
control classes are used for overall work zone project management (CWzProject),
interface windows for user-friendly data input/modification (CDialog), operation action
for performing various computations (CAction), document management (CDocment), and
graphical view (CView). These classes are directly derived from the MFC class CObject
to take advantage of the services provided for object storage and retrieval. Sub-classes
are derived from the five control classes and inherit their properties. Functions of classes
in Figure 5 are described briefly in Appendix I. Figures 6 and 7 show the classes, their
inter-relationships, and the main methods used in each class for the work zone capacity
estimation, and queue delay and length estimation parts of IntelliZone, respectively.
Every box represents a class. The methods encapsulated in a class are listed in the box.
The classes in boldface are derived directly from an MFC class and classes in italic

represent non-MFC classes. Each one of the latter classes performs only a particular
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function and is therefore called a method class. The methods of classes in Figure 6 and 7

are described briefly in Appendix 1.

Figure 8 shows the information flows and exchanges among various user interface
windows. The sequence of user interactions with various interface windows is identified
by shaded boxes from the bottom to top along the double-line arrows. The input/output
information flow and exchanges are executed along the dashed line arrows. A freeway
work zone project is divided into several work zone segments based on the construction
schedule. Work zone capacity and traffic queues are estimated for every segment. The
work zone capacity and traffic queue are re-estimated after any parameter change in any

user-interface dialog.
USER INTERFACE FOR CAPACITY ESTIMATION

IntelliZone provides an interactive user-friendly interface for training and using the
neural network models to estimate the work zone capacity. Figure 9 shows the
introductory screen shot of IntelliZone. The menu bar in the top provides the options
Capacity (for capacity estimation), Delay (for traffic queue delay estimation), and Result
(for displaying the results). The Capacity option provides three dialog boxes: Project
Information (Figure 10), Work Zone Scenarios (Figure 11), and Work Zone Capacity
Estimation (Figure 12). All input data entry and modification for work zone capacity

estimation are handled by these dialog boxes.

The dialog box in Figure 10 provides the interface for inputting the basic information
about a given project, including project identification (ID) number, name, description,

location and address as well as project length. With the exception of the project length,
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the information provided in this dialog box does not affect the work zone capacity
estimation and queue length estimation. Figure 11 shows the main dialog box for
inputting the values for up to seventeen input variables used in the capacity estimation
model. The user provides numerical input values for 7 variables and chooses from a
number of options for the remaining variables. For example, for the work zone intensity
the user chooses from 6 different intensity levels. The user can input for up to 20
different scenarios. The data for various scenarios are summarized in a list box at the
bottom of the dialog box. When a data item is not available the default value of N/A is

used to indicate the lack of data.

The dialog box in Figure 12 provides the user-interface for capacity estimation of the
work zone scenarios using either the backpropagation or fuzzy-radial basis function
neural network model. Each neural network model has been trained using actual data.
The results are saved as the weights of the links. The user can use each neural network
model with saved values for the weights, or alternatively, ask for new network training
with a new set of randomly initialized weights. The dialog box in Figure 12 also allows
up to 20 different work zone capacity estimations using different scenarios, different

neural network models, and with or without new training of the network.

The introductory screen of IntelliZone is divided into three windows (Figure 9). The
Result option in the menu bar guides the user to two other multi-window screens. The
first option, Training Curve, leads to the three-window screen shown in Figure 13. First,
an option dialog is popped up asking for the capacity ID. Then, the results for training
and testing of the network are displayed. The left window provides numerical results for

the training and testing of the neural network. The upper right window displays the
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testing results graphically along with the desired results for the data used to train the
network. It shows the accuracy of the trained neural network model for estimating the
work zone capacity. The lower right window displays the training and checking curves.
The lowest point in the checking curve (iteration number 23 in Figure 13) represents the
iteration number for the network training with the best generalization (Adeli and Jiang,

2003). The results of training at this iteration are used in the neural network model.
USER INTERFACE FOR QUEUE ESTIMATION

The Delay option in the top menu bar (Figure 9) guides the user to three dialog
boxes. The entry and modification of input information for work zone queue estimation is
handled by three dialog boxes shown in Figs. 14 to 16. Figure 14 shows the Work Zone
Segment input dialog box. For convenience of scheduling and construction, a work zone
project is usually subdivided into several work zone segments. Each work zone segment
is defined by a unique ID number. The start and finish dates and times (in increments of
half an hour), length, and number of open lanes for each segment are also entered in this
dialog box. The work zone segment duration is automatically calculated based on the
start and finish dates and times. A summary of the input values for all the segment (up to

20) is displayed at the bottom of the dialog box.

Figure 15 shows the Work Zone Traffic Flow dialog box which is used to input
the average hourly traffic flow from an existing hourly flow file. The flow file can
include traffic flow data for multiple years. If the work zone project is for a future time
the work zone engineer can modify the data by providing appropriate seasonal and
diversion factors to be discussed in the next dialog box. A traffic flow ID number is used

to uniquely identify the traffic flow set. For the same work zone segment, different traffic
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flow sets can be inputted. This is helpful for scenario analysis and studying the impact of
various traffic flows on the work zone queue delay and length estimation. The values for
other parameters such as work zone start and finish dates and times are inherited directly
from the previous dialog box. Every set of hourly traffic flow data is also summarized in
a box at the bottom of the dialog box where each line represents the traffic flow data for
up to 24 hours in a day (when the duration of the work zone is more than one day, the

flow data are presented in multiple lines).

Figure 16 shows the dialog box for work zone queue delay and length estimation.
The results can be obtained for any combination of work zone segment, traffic flow, and
work zone capacity. In this dialog box the user is asked to enter the traffic flow and work
zone capacity ID numbers (every traffic flow is associated with a given work zone
segment ID number described in the previous dialog box, Figure 15), seasonal demand
factor, diversion factor (e.g., for a 10% diversion, the factor is 0.9), and average length
for vehicle occupancy. If a value of zero is entered for the last item, only queue delay in
vehicles per hour per lane for every hour of the day and its maximum value during the
day are presented in the box at the bottom of the dialog box. Otherwise, the total queue
length in km or mi in every hour of the day as well the maximum queue length during the

day are presented.

If the existing flow data take into account the seasonal variation of the traffic the
user (work zone engineer) shall enter a default value of one for the seasonal factor.
Otherwise, the user will have the option to adjust the approaching traffic flow for
seasonal variations by choosing a seasonal factor in the range of 0.5 to 2.0. The diversion

factor is used to take into account the effect of an intersection close to the work zone or a
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residential street in an urban area. An intersection close to work zone creates traffic
diversion and affects the anticipated hourly traffic flow approaching the work zone. If the
traffic diversion is taken into account in the anticipated hourly traffic flows approaching
the work zone then the user will enter a default value of one for the diversion factor.
Otherwise, the user will have the option to adjust the approaching traffic flow by
choosing a diversion factor in the range of 0.5 to 0.99. The work zone segment capacity
is obtained from the capacity estimation model described in the previous section. But, the
user is provided with the option of overriding the computed work zone capacity in case a
more accurate number is available based on actual measurements in the particular

locality.

As mentioned earlier, the Result option in the menu bar of the introductory screen
of IntelliZone (Figure 9) guides the user to two other multi-window screens. The first
option, Training Curve, was presented in Figure 13. The second option, Queue Graphs,
leads to the three-window screen shown in Figure 17. First, a Graph Option dialog is
popped up asking for the queue ID from dialog box shown in Figure 16. Then, the results
for traffic flow and queue delay are displayed. The left window provides numerical
values of the work zone traffic flow and queue delay (in vehicles per hour per lane) or
length (in km or mi). The right-upper window displays the traffic flow graphically in the
form of a bar diagram as a function of the hour of days. The maximum traffic flow in
every day is noted in the display. The lower-right window displays the queue delay or
length. The maximum queue value is also indicated in the display.

IntelliZone allows simultaneous execution of multiple work zone projects, each

having different segments. The results for various projects are saved and may be
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displayed by toggling back and forth among various windows, as shown in the example
of Figure 18. The Result option in the menu bar of the introductory screen of IntelliZone
(Figure 9) creates a text file for input as well as output the results. It provides a report file
for every project.

ILLUSTRATIVE EXAMPLE

The data used for training the neural networks were obtained from California,
Indiana, Maryland, North Carolina, and Texas. They are described in Adeli and Jiang
(2003) and will not be repeated here. As an illustrative example, IntelliZone is used to
estimate the work zone capacity for an actual freeway work zone scenario with measured
data provided by Dixon et al. (1997). The work zone site is a two-lane rural freeway on I-
95 with one lane closure. Dixon et al. (1997) provide values for only nine out of
seventeen input variables available in IntelliZone. The input values for the example are
those used in Figure 11. Data are not provided for pavement grade, lane width, work zone
length, work zone speed limit, proximity to a ramp, weather and pavement conditions,
and the driver composition. No values are used for pavement grade, work zone length,
and the driver composition in this example.

Two different groups of scenario analysis are performed for this example. The
results are summarized in Table 1. In group a) seven different values are used for the lane
width in the work zone ranging from 9 ft to 12 ft in increments of 0.5 ft along with two
different truck percentages. In this case, for the percentage truck of 26.2, the estimated
work zone capacity ranges from 820 vphpl (for lane width of 9) to 1312 vphpl (for lane
width of 12 ft). The measured value provided by Dixon et al. (1997) for the same truck

percentage of 26.2 is 1284 vphpl. When the truck percentage is decreased to 18.8, the
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estimated work zone capacity ranges from 858 vphpl (for lane width of 9) to 1339 vphpl
(for lane width of 12 ft). The measured value provided by Dixon et al. (1997) for the
same truck percentage of 18.8 is 1327 vphpl. A high truck percentage in the traffic flow
reduces the work zone capacity value, as expected.

In group b), freeway work time (daytime or night) and workday (weekday and
weekend) are considered while keeping the lane width constant at 12 ft and the truck
percentages the same as those used in group a). The results are summarized in Table 1.
The work zone capacity is the lowest when work is performed at night in the weekend.

Traffic flow data measured in a work zone in a two-lane freeway in the state of
North Carolina with one lane closure are employed to illustrate the use of IntelliZone for
estimating the work zone queue delay or length. The hourly traffic flows approaching a
work zone on route NC 147, 0.1 miles south of SR 1171, are stored in a text file (flow.txt)
and used in the input dialog box (Figure 15). The period of data collection is
approximately one year (year 2000). For the illustrative example, the project is divided
into two work zone segments as shown in Figure 14. A vehicle occupancy length of 10 ft
is used. The work zone queue delays and lengths estimated by IntelliZone at various
hours are shown in Figure 16. Only part of the result can be seen in Figure 16. To see the
entire results the user has to scroll down and to the right in the list box. The estimated
results are also shown graphically in Figures 17 and 18.

FINAL COMMENTS
An OO model is presented for freeway work zone capacity and queue delay and

length estimation. The model is implemented into an advanced intelligent decision
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support system, called IntelliZone, for effective management of work zones. IntelliZone

has the following features and advantages:

e Integrated work zone capacity and queue estimation model.

e Capability of handling multiple-segment and multiple-traffic flow strategies;

e A mechanism to handle varying work zone scenarios.

e [ntelliZone’s capacity estimation engine is based on pattern recognition and neural
networks models incorporating a large number of factors impacting the work zone

capacity.

e [IntelliZone provides a highly interactive user-interface with all the tools necessary for

scenario analysis and effective control of work zone traffic.

e [IntelliZone provides a context-sensitive help facility readily available at any point of
execution of the software.
APPENDIX 1. DESCRIPTIONS OF MAIN CLASSES SHOWN IN FIGURES 5
AND 6
e (CAction: Provides an interface for managing actions (input
quantification/normalization, traffic demand computation, and capacity and queue
delay estimation).
e CBPnetwork. Encapsulates the backpropagation neural network model.
e (CCapacityDialog: Provides an interface for estimating the work zone capacity.
e CCapacityDoc: Records the capacity estimation result for a work zone project.
e CCapacityView: Provides an interface for graphically viewing the neural network

training results.
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CFlowDialog: Provides an interface for inputting/modifying multi-flows for a
work zone segment.

CintelliZoneDoc: Controls the presentation of results in the form of texts or
documents.

ClntelliZoneView: Controls the graphic presentation of results.

CProjectDoc: Provides an interface for a work zone project application document.
CQuantify. Quantifies and normalizes input variables for work zone capacity
estimation.

CQueueDelay: Encapsulates work zone queue delay model.

CQueueDialog: Provides an interface for inputting/modifying multi-queues by
users.

CQueueDoc: Records the queue results for a work zone project.

CQueueView: Provides an interface for graphically viewing the queue results.
CRBFnetwork: Encapsulates fuzzy-radial basis function neural network model.
CScenarioDialog: Provides an interface for abstracting multi-scenarios provided
by the user.

CSegmentDialog: Provides an interface for abstracting multi-segments provided
by the user.

CTrafficFlow: Encapsulates multi-flows for a work zone segment.
CTrafficFlowDoc: Records traffic flows for a work zone project.

CWzCapacity: Provides an interface for estimating work zone capacity.

CWzProject: Provides an interface for managing a work zone project.
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e CWzProjectDialog: Provides an interface for abstracting a work zone project
provided by the user.

e CWzQueue: Encapsulates multi-queues for a work zone project.

e CWzScenario: Abstracts a work zone segment scenario.

o CWzScenarioDialog: Provides an interface for abstracting multi-scenarios
provided by the user.

o CWzSegment: Abstracts a segment of a work zone.

o CWzSegmentDialog: Provides an interface for abstracting multi-segments
provided by the user.

APPENDIX II. DESCRIPTIONS OF MAIN METHODS IN FIGURES 6 AND 7

o AdjustWeights(): Adjusts the weights of the links in the neural network

e BPnetwork(): Executes the backpropagation neural network algorithm.

o ClusterCenters(): Creates cluster centers using fuzzy c-means algorithm.

e ComputeFlow(): Modifies the traffic flow using seasonal and diversion factor.

e ConvertDate(): Converts the value of date to hour.

e ConvertUnits(): Converts the value of an input provided in Sl units to a value in
the U.S. customary system of units.

e GenerateNetwork(): Generates a network for the neural network model.

o GetLength(): Sets the value of the length provided by an input dialog box.

e NormalizeVariable(): Normalizes variables to the range of 0 to 1 by using a
nonlinear normalization function.

e OnlnitDialog(): Initializes a dialog.
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e PropagateNet(): Propagates the errors from the hidden layer to the output layer in
the backpropagation neural network model.

e QuantifyVariable(): Quantifies the linguistic variables.

e QueueEstimate(): Executes traffic flow queue delay and length estimation.

e RBFnetwork(): Executes radial basis function neural network algorithm.

o Sshape(): Uses S-shape spline-based nonlinear normalization function.

e TrainNet(): Trains the neural network model using the normalized training data.

e Zshape(): Uses Z-shape spline-based nonlinear normalization function.
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Table 1 Scenario analysis and influence of input variables for work zone capacity
determination

State: North Carolina Location: Rural Work duration: Long-term
Number of lanes: 2 Number of lane closures: 1 Truck percentage: 26.2 and 18.8
Work intensity: 6 Work time: day Workday: weekday
Measured work zone capacity: 1284 and 1327 vphpl Method: RBF network
. . Estimated capacity (vphpl)
Group | Scenario No. | Lane width (feet) 26.2% trucks 18.8% trucks
1 9.0 820 858
2 9.5 943 986
@) 3 10.0 1093 1140
4 10.5 1206 1257
5 11.0 1259 1313
6 11.5 1280 1334
7 12.0 1312 1339
Scenario No. Work time Workday Estimated capacity (vphpl)
1 Daytime Weekday 1265
(b) 2 Night Weekday 1183
3 Daytime Weekend 1008
4 Night Weekend 934
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PRELIMINARY TMP

o Work zone configurations: number of closed lanes, location of the closed lanes, and
work zone layout.

o Traffic conditions: percentage of trucks, driver composition, entrance ramp traffic,
and alternate route.

o Freeway conditions; pavement grades, lateral distance to the open lanes, weather
conditions, and pavement conditions.

o Work zone schedule: work zone length, work duration, and work time.

o Work intensity.

Capacity Queue length Traffic demand
estimation estimation computation

EVALUATE TMP

e Work zone queue length
o Assessment of previous work zone case histories
e Expert opinion

A\

CHANGE IDENTIFICATION AND SCENARIO
ANALYSIS

Change identification

¢ Work zone capacity improvement

e Work zone traffic demand reduction

o Work zone schedule plan modification

o Determination of parameters to be changed in the work zone
scenarios

Scenario analysis and record

o Work zone scenario information (characteristics, conditions,
schedule, etc.)

e Causes of change

¢ Decisions made

o Effects of change

y

FINAL TMP

Figure 2 Intelligent decision support procedure for creating a freeway
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Figure 3 Schematic view of application architecture for constructing IntelliZone
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Figure 5 Main classes for the controlling class, CObject
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CLUSTERING-NEURAL NETWORK MODELS AND

PARAMETRIC STUDY OF WORK ZONE CAPACITY

Xiaomo Jiang™ and Hojjat Adeli*?

ABSTRACT: Two neural network models, called clustering-RBFNN and clustering-
BPNN models, are created for estimating the work zone capacity in a freeway work zone
as a function of seventeen different factors through judicious integration of the
subtractive clustering approach with the radial basis function (RBF) and the
backpropagation (BP) neural network models. The clustering-RBFNN model has the
attractive characteristics of training stability, accuracy, and quick convergence. The
results of validation indicate that the work zone capacity can be estimated by clustering-
neural network models in general with an error of less than 10%, even with limited data
available to train the models. The clustering-RBFNN model is used to study several main
factors affecting work zone capacity. The results of such parametric studies can assist
work zone engineers and highway agencies to create effective traffic management plans

(TMP) for work zones quantitatively and objectively.
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INTRODUCTION

The work zone capacity in freeways is usually defined as the mean queue discharge
flow rate at a freeway work zone bottleneck (any constricted location that restricts the
flow of vehicles in a work zone) (HCM, 2000). The work zone capacity is a complicated
and non-quantifiable function of a large number of interacting variables some of which
are linguistic such as work zone layout and weather conditions, which explains the dearth
of scientific work on mathematical modeling of the freeway work zone capacity. Karim
and Adeli (2003) present an adaptive computational model for estimating the work zone
capacity and queue length and delay taking into account the following factors: number of
lanes, number of open lanes, work zone layout, length, lane width, percentage trucks,
grade, speed, work intensity, darkness factor, and proximity of ramps. The model
integrates judiciously the mathematical rigor of traffic flow theory with the adaptability

of neural network analysis.

In a recent article, Adeli and Jiang (2003) present a new neuro-fuzzy model for
estimating the work zone capacity taking into account seventeen different numeric and
linguistic factors. A backpropagation neural network is employed to estimate the
parameters associated with the bell-shaped Gaussian membership functions used in the
fuzzy inference mechanism (Zadeh, 1978). An optimum generalization strategy is used in
order to avoid over-generalization and achieve accurate results. Comparisons with two
empirical equations demonstrate that the new neuro-fuzzy model has the following
advantages: 1) it incorporates a large number of factors impacting the work zone
capacity, 2) it provides a more accurate estimate of the work zone capacity, especially

when the data for factors impacting the work zone capacity are only partially available,
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and 3) unlike the empirical equations, the new model does not require subjective
selection of various adjustment factors or values by work zone engineers based on prior
experience.

However, the existing models for freeway work zone capacity estimation cannot yield the required acc
create the clustering-RBF and clustering-BF neural network models. The two clustering-
neural network models are developed for estimating the work zone capacity in a freeway
work zone as a function of seventeen different factors.

The clustering-RBFNN model investigated in this research is a modification of the
fuzzy-RBFNN model of Karim and Adeli (2003). Work zone patterns are first grouped
into similar clusters using a data clustering approach. Similarity of any new work zone
pattern to the training patterns is measured by its proximity to the centers of the clusters.
Karim and Adeli (2003) use the fuzzy c-means algorithm (Adeli and Karim, 2000) to find
the cluster centers. In this work, the subtractive clustering approach described in Adeli
and Jiang (2003) is used to determine the optimum number of clusters and clustering
centers where it is assumed that each data point belongs to a potential cluster based on
the minimum value of a predefined objective function. Subtractive clustering is an
effective approach for grouping data into clusters and discovering structures in data
(Chiu, 1994; Yager and Filev, 1994). The clustering-BPNN model is similar to the
clustering-RBFNN model except that the neural network classifier in the former is the

simple BP algorithm and in the latter is the RBFNN.
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FACTORS IMPACTING THE WORK ZONE CAPACITY

Seventeen different numeric and linguistic factors are used in the developed
clustering-neural network models: 1) percentage of truck (xi), 2) pavement grade
(vertical slope in the longitudinal plane) (x.), 3) number of lanes (x3), 4) number of lane
closures (X4), 5) lane width (xs), 6) work zone layout (xs), 7) work intensity (X7), 8) work
zone length (length of closure) (xs), 9) work zone speed (Xo), 10) proximity of ramps
(X10), 11) work zone location (x11), 12) work zone duration (X3,), 13) work time (xi3), 14)
work day (xi14), 15) weather condition (xis), 16) pavement conditions (xi6), and 17) driver
composition (X17). A detailed discussion of impact of these factors is presented in Adeli

and Jiang (2003).

Symbolically, the work zone capacity can be expressed as a function of 17 variables

defined in the previous paragraphs:

y=f(x, Xy, Xy) (1)

Among the seventeen variables, some are linguistic such as work zone layout and
weather conditions, some are binary two-valued parameters such as the interchange effect
representing the existence of ramps near or within work zone, and others are numeric
such as the work zone length. The variables are quantified and normalized using the
methods described in Adeli and Jiang (2003). Spline-based nonlinear functions are used
to quantify each linguistic as well as binary-valued variable mathematically. Spline-based
nonlinear functions are also assigned to numeric variables in order to model the impact of

their variations on the work zone capacity.
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CLUSTERING-NEURAL NETWORK MODELS
General Topology of Neural Networks

Acrtificial neural networks have been shown as a powerful tool for solution of
complicated problems not amenable to conventional mathematical approaches (Adeli and
Hung; 1995; Adeli 2001; Adeli and Karim, 2001). The topology of the neural network
models for estimating the work zone capacity is presented in Figure 1. It consists of an
input layer, a hidden layer, and an output layer. The input layer has 18 nodes representing
the 17 variables defined in the previous section and an 18" node to indicate the data
collection locality. The values of the variables in the input layer are normalized to values
between 0 and 1 employing the S-shape and Z-shape spline-based nonlinear functions as
explained in Adeli and Jiang (2003). The normalization prevents the undue domination of
variables with large numerical values over the variables with small numerical values,
thus improving the accuracy of estimating work zone capacity and accelerating the
convergence of the network training. The normalized variables are denoted by g1 to gig in
Figure 1. A bias node with the value of one (go = 1) is added to the input layer. Without
the bias, the hyperplane separating the patterns is constrained to pass through the origin
of the hyperspace defined by the inputs, which limits the adaptability of the neural

network model. The parameterw, represents the weight of the link connecting the
normalized input node i to node ; in the hidden layer

The number of nodes in the hidden layer, N+1, is equal to the number of cluster
centers used to characterize and classify any given training data set. For the number of

nodes in the hidden layer, instead of the trial-and-error approach commonly used in
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creating the neural network topology, the subtractive clustering method described in
Adeli and Jiang (2003) is used. In Figure 1, the variables in the hidden layer are denoted
by p, to p, .A bias node with the value of one ( p, = 1) is also added to the hidden layer
for the same reason described earlier. The output layer has only one node for the
estimated work zone capacity. The estimated work zone capacity, C, is obtained from

the clustering-neural network model as the aggregation of the weighted outputs of N+1

hidden nodes as follows:
R N
C= ijpj (2)
j=0

where the first term in the summation (for ; =0) represents the bias and wj is the weight

of the link connecting the jth node in the hidden layer to the output node.
Clustering-RBFNN

Adeli and Karim (2000) used the fuzzy c-means clustering algorithm to improve the
performance of RBFNN for another pattern recognition problem, the freeway traffic
incident detection problem. Karim and Adeli (2003) present a fuzzy-RBFNN model for
mapping eleven quantifiable and non-quantifiable factors influencing the work zone
capacity to the work zone capacity. In this work, the Gaussian function is used as basis in
the hidden or the radial basis function (RBF) layer of the neural network model in the

following form (Figure 2):

I
pj_exij’ j=12,...,N 3)
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where [X] = 218|X,.|2 is the Euclidean distance, p is the value of the jth node in the

hidden layer, q is the 18 x1 vector of the normalized input variables, ¢; (j =1, ..., N) is
the 18 x 1 vector of the jth clustering data center, which are determined by the subtractive
clustering approach, as are the optimum number of clusters, and N is the number of radial

basis functions which is also equal to the optimum number of clusters.

In Eqg. (3), the factor o, is the influencing range of the Gaussian function

centered at ¢;, whose squared value in this research is approximated using the mean

squared distance between cluster centers, as expressed by:
2 13 2 .
o; =N2Hc1_cf” j=12,....,N 4)
i=1

where M is the total number of training data sets. The work zone capacity estimated by
the clustering-RBFNN model is obtained as the aggregation of the weighted outputs of

N+1 hidden nodes from Eqg. (2).

The weights of the links connecting the hidden nodes to the output node are
updated by minimizing the mean squared error (MSE) of the normalized work zone
capacity and using the gradient descent optimization algorithm described in Adeli and
Jiang (2003). Two stopping criteria are used for convergence of the clustering-RBFNN
model. One is the acceptable mean squared error value (0.001 used in this study) and the

other is the maximum number of iterations (400 used in this study).

In a conventional RBFNN, the weights of the links connecting the input layer to the
hidden layer (i.e. the RBF parameters ¢; defining the cluster centers) have to be updated

in every iteration, similar to a standard multiple-layer feed-forward neural network. In

216



contrast, in the clustering-RBFNN model used in this research, the centers of RBF

clusters (c,) are determined in one step using the subtractive clustering approach,

resulting in substantial speedup in the training convergence of the network and reduction

of computer processing time for training the network.
Clustering-BPNN

The BP neural network (Hagan et al., 1996) has been popular because of its
simplicity despite its slow convergence rate for complex pattern recognition problems
(Adeli and Hung, 1994). It is based on the gradient descent unconstrained optimization
approach where weights are modified in a direction corresponding to the negative
gradient of a backward-propagated error measure. In this research, the simple BP neural
network algorithm is integrated with the subtractive clustering technique and used as an
alternative approach for estimation of work zone capacity. The output of the jth hidden

node in the BP neural network, p., is determined by the sigmoid activation function
(Figure 3):

p, =lL+exp(-X ) j=1,2, ..., N (5)

18
where X = ngqi is the aggregation of the 18 weighted normalized input variables
i=0

plus the bias (for i = 0). The output value estimated by the clustering-BPNN model is

obtained also using the sigmoid activation function as follows:

C =1/(1+exp(-X)) (6)
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N
where X = ijpj is the aggregation of the weighted outputs of N nodes in the hidden

Jj=0

layer plus the bias (for j = 0).

Figure 3 shows the architecture of the clustering-BPNN model for the work zone
capacity estimation. There are a number of differences between this model and the
clustering-RBFNN model shown in Figure 2. In the clustering-BPNN model: 1) weights
of the links connecting the input layer to the hidden layer are required to be updated in
each iteration of training the network, 2) aggregation is executed in both hidden and
output layers, 3) a so-called momentum term is added to the weight modification equation
or learning rule to help prevent the neural network getting trapped in a local minimum
(Hagan et al., 1996), and 4) the over-generalization problem is avoided by employing an
optimum generalization strategy (Adeli and Jiang 2003) for training the neural network.
The resulting clustering-BPNN model requires more computation time for estimating the

work zone capacity compared with the clustering-RBFNN model.

TRAINING AND VALIDATING THE NETWORKS
Training

The data used to train and validate the neural network models are collected
primarily from the literature and complemented by data obtained directly from North
Carolina Department of Transportation. The collected data sets from four different states
and city of Toronto are divided randomly into training, checking, and validation data set,
as summarized in Table 1. Limited data from California (from the late 1960's) and Ohio

were also available to the authors but are not included in this study because those from
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California are too old and those from Ohio are too few to represent typical work zones.
None of the data set includes all the 17 input variables used in the new computational
model. The number of input variables provided ranged from four (number of lanes,
number of lane closure, work zone intensity, and work zone duration) to fourteen
(percentage of heavy trucks, grade of pavement, number of lanes, number of lane closure,
work zone intensity, length of closure, work zone speed, proximity of ramps to work
zone, work zone location, work zone duration, work time, work day, weather conditions,
and driver composition). For those unavailable input variables, values of zero are

obtained after variable quantification and normalization, as described earlier.

Training of neural networks is performed similar to the approach used in Adeli
and Jiang (2003) and skipped for the sake of brevity. Convergence results for training the
networks based on the entire 39 training data sets in Table 1 are displayed in Figure 4. It
is noted that the convergence rate for the clustering-RBFNN is substantially faster than
the clustering-BPNN. On a 1.5GHz Intel Pentium 4 processor, the CPU time for training

the former is 0.25 seconds and the latter 1.42 seconds.
Validation

Eight sets of validation data sets selected randomly from the collected data sets
are used to validate the accuracy of the clustering-neural network models (Table 1). The
input values for the 8 data sets are summarized in Table 2. There are two sets from the
states of Indiana, Maryland and Texas each, and one set from North Carolina and

Toronto each.
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The work zone capacities estimated by three different models, the neuro-fuzzy logic
(Adeli and Jiang, 2003), clustering-BPNN, and clustering-RBFNN models, are
summarized in Table 3. The root of mean squared error (RMSE) values obtained for the
three models are 229 vph, 215 vph, and 114 vph, respectively. As such, based on the
limited training and validation data used, the clustering-RBFNN model provides the most
accurate results. The error percentage for this model ranges from 0.1% to 8.7% (with one
exception the error is generally under 5%). For the other two approaches, the error is in

general less than 10% with the exception of one case for each method.

The clustering-RBFNN model appears to have the attractive characteristics of
training stability (the training results are not sensitive to the initial selections of the
weights), accuracy, and quick convergence. In the next section, the clustering-RBFNN
model is used to perform a parametric study of the main factors affecting the work zone

capacity.

PARAMETRIC STUDIES OF WORK ZONE CAPACITY

This study is done for an actual freeway work zone scenario with measured data
provided in Dixon et al. (1997). The work zone site is a two-lane rural freeway on 1-95 in
North Carolina with one lane closure (Figure 5a). Dixon et al. (1997) provide values for
only nine out of seventeen input variables used in the computational models created in
this research, as summarized in Table 4. Data are not provided for pavement grade, lane
width, work zone length, work zone speed limit, proximity to a ramp, weather and
pavement conditions, and driver composition. Parametric studies presented in this paper,
however, are for eleven factors influencing the work zone work intensity: percentage of

trucks, work zone configuration, layout, weather conditions, pavement conditions, work
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zone lane width, pavement grade, presence of ramps, work day, and work time. The
impact of other factors is not investigated because insufficient data existed in the neural

network training data set available to the authors.

Work Intensity

Work intensity in the parlor of the freeway work zone is a qualitative and
subjective concept without any standard classification scheme. In this research, the work
intensity is divided into six categories from the lightest to the heaviest, represented
numerically by one to six, respectively, as summarized in Table 5. Keeping all other
variables in the given work zone constant, the work zone capacities for six different work
intensities are estimated using clustering-RBFNN model. The results are summarized in
Table 4 and displayed in Figure 5b, which shows the work zone capacity reduces with an

increase in the intensity of the work, as expected.

Percentage of Trucks

Keeping all other variables in the given work zone constant, the work zone
capacities for nine different percentages of truck, ranging from 8% to 30%, are estimated.
The results are summarized in Table 4 and displayed in Figure 5b, which shows the work
zone capacity reduces with an increase in the percentage of trucks, as expected. The
measured value provided by Dixon et al. (1997) for the truck percentage of 26.2 is 1284
vphpl. The clustering-RBFNN model provides the estimate of 1265, with a small error of

less than 2%.

Work Zone Configuration, Layout, and Weather/Pavement Conditions
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Parametric studies of work zone configurations include the total number of lanes (2,
3 or 4), number of lane closures (1, 2 or 3), and work zone layout (i.e., merging, shifting,
and crossover). Further, the influence of weather conditions (i.e., rainy or snowy) and
pavement conditions (i.e., wet or icy) on the work zone capacity are also investigated.
The work zone configurations are shown in Figure 6 and their results are summarized in

Table 6 and graphically shown in Figure 7.

Three different work zone scenarios are studied. Scenario 1 is for a two-lane
freeway with one-lane closure, Scenario 2 is for a three-lane freeway with two-lane
closure, and Scenario 3 is for a four-lane freeway with three-lane closure (Figure 6). In
all scenarios only one lane is open. The results are summarized in the Table 6. For a
single open lane, the work zone capacity reduces as the total number of lanes increases.
Compared with a two-lane freeway, this reduction is only 1% for a three-lane freeway,
but 9% for a four-lane freeway. This suggests that for a four-lane freeway a cost-benefit
analysis should be performed for the option of keeping two lanes open versus
maintaining just one lane open. The results of parametric studies indicate that the work
zone capacity varies significantly with the number of freeway lanes as well as number of
lane closures which is consistent with the study on freeway work zones in Texas by

Krammes and Lopez (1994).

The per lane work zone capacity for the merging layout is about 14% more than
that for the crossover layout and about 8% more than that for the shifting layout. The
work zone capacity for the sunny weather (dry pavement) condition is about 6% more
than that for the rainy weather (wet pavement) and about 10% more than that for the

snowy weather condition.
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Work Zone Lane Width and Pavement Grade

Keeping all other variables in the given work zone constant, the work zone
capacities for seven different lane widths, ranging from 2.7 m (9 ft) to 3.6 m (12 ft) in
increments of 0.15 m (0.5 ft) are estimated for two cases, in the presence and absence of
the pavement grade. The results are shown in Table 7 and graphically in Figure 8. In the
presence of the pavement grade, the estimated work zone capacity ranges from 1054
vphpl (for the smallest lane width of 2.7 m) to 1342 vphpl (for the largest lane width of
3.6 m). In the absence of the pavement grade, the estimated work zone capacity ranges
from 1262 vphpl (for the smallest lane width of 2.7 m) to 1862 vphpl (for the largest lane
width of 3.6 m). The following observations are made. The work zone lane widths in the
range of 3.3 m (11 ft) to 3.6 m (12 ft) (the U.S. standard lane width) do not affect the
work zone capacity by any significant measure. As the work zone lane width reduces the
work zone capacity decreases significantly. The presence of the work zone pavement
grade exacerbates the traffic flow constriction (e.g., speed) and affect drivers’ behaviors,
resulting in a significant reduction in the work zone capacity in the range of 20% for a

work zone lane width of 2.7 m (9 ft) to 39% for a width of 3.6 m (12 ft).

Presence of Ramp

The neural network models take into account the effect of presence of ramps on
the work zone capacity. The presence of ramps is treated as a qualitative variable instead
of a quantitative one. An example of ramp proximity to the work zone is illustrated in
Figure 9a. The work zone capacities estimated for a two-lane rural freeway on 1-95 in

North Carolina with one lane closure in the presence and absence of a ramp are
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summarized in Table 8 and shown in Figure 9b. The presence of ramp reduces the

capacity by 12.6%.

Work Day and Work Time

Work zone capacities for four combinations of work day (weekday or weekend) and
work time (daytime or night) are summarized in Table 8 and presented in Figure 9b.
Since in all likelihood commuters and regular travelers during the weekdays are more
familiar with the configuration of the work zone and the traffic control plans in the
affected areas (e.g. route diversion) than non-commuters (e.g. tourists) traveling during
the weekends, the work zone capacity is somewhat larger during the weekday than during
the weekend. The parametric study performed in this research can quantify this
observation. The estimated capacities for the weekend are about 37% smaller that those

for the weekday during both daytime and night.

The driver behavior and traffic characteristics differ during daytime and nigh
time. Night construction can decrease the work zone capacity because of the reduced
travelers’ attention and inferior visibility during nighttime (Al-Kaisy and Hall 2001).
Again, the results performed in this research can quantify this observation. The estimated
work zone capacities for construction at night are 10-11% smaller that those for the

construction at daytime.

FINAL COMMENTS
The results of validation indicate that the work zone capacity can be estimated by

clustering-neural network model in general with an error of less than 10%, even with

limited data available to train the models. With additional data and training of the models
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the accuracy can be improved substantially. The computational models presented in the
paper are general. The parametric studies, however, are based on the adaptation of the
work zone in a two-lane rural freeway on 1-95 in North Carolina with one lane closure.
There is no intention to offer generalized conclusions for every other work zone situation.
However, the computational models provide a powerful tool to perform parametric

studies for other work zone situations.

The results of a parametric study of the factors impacting the work zone capacity
can assist work zone engineers and highway agencies to create effective TMPs for work
zones quantitatively and objectively. To the authors' best knowledge this quantitative
parametric study is the first of its kind. A number of observations are made based on the
limited data available for training the models. There is a definite need to collect
additional data for various work zone conditions. Such data will have two significant
applications. First, they can be used to further train the clustering-neural network models
in order to improve the accuracy of work zone capacity estimation. Second, they can be
used for more detailed sensitivity analysis.
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Table 1 Training, checking, and validation data set

State Index — 52 data sgts —
Training Checking | Validation
Indiana 1 9 1 2
Maryland 2 9 1 2
North Carolina 3 7 1 1
Texas 4 7 1 2
Toronto 5 7 1 1
Total 39 5 8
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Table 2 Input values for 8 work zone scenarios used to validate three work zone capacit

y estimation models

Var. | X X2 X3 X4 Xs X X7 Xg Xg X10 X11 X12 X13 X14 X1i5 X16 X17 X1

No. | No. of Length .
Data | Truck | Grade of Lane Lgne Layout Worlf of |Speed Ramp | Location Work Work Work day Weather | Pave. | Driver State
set | (%) | (%) lanes | closures Width Intensity | closure [(km/h) dur. | time Cond. |Cond. | comp.

(km)

1 32 - 2 1 - M 6 11.7 - - Rural Long | Day | Weekday - - - Indiana
2 10 - 2 1 - C 2 11.7 - - Rural Long | Day | Weekday - - - Indiana
3 8 5 4 1 - - 1 0.18 48 | Yes | Urban Short | Day | Weekday | Sunny - 0 Maryland
4 8.5 0 4 2 - - 6 2.2 34 | Yes | Urban Short | Night| Weekday | Sunny - 0 Maryland
5 |26.2 - 2 1 - - 6 - - - Rural Long | Day | Weekday - - - N. Carolina
6 - - 4 1 - - 1 - - - - Short - - - - - Texas
7 - - 5 3 - - 3 - - - - Short - - - - - Texas
8 - 3 3 1 - - - - - - Urban Short | Day - Sunny | Dry 1 Toronto

M = Merging, C = Crossover,

- Unavailable data
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Table 3 Comparisons of the work zone capacity estimates by neuro-fuzzy logic, clustering-BPNN, and clustering-RBFNN models

Data set| Open Neuro-fuzzy logic (C,)|Clustering-BPNN Clustering-RBFNN
State Closed \'\/’;fl"j‘z“(rce‘;  (vph) (C.) (vph) (C,) (vph)
number |lanes lanes (V h) ! (Adell&.]lang, 2003)
P Values Error Values Error Values Error
(vph) (%) (vph) (%) (vph) (%)
Indiana 1 1 1 1308 1320 0.9 1326 14 1287 1.6
2 1 1 1595 2138 34.1 1265 20.7 1540 3.4
3 3 1 5205 5343 2.6 4982 4.3 5211 0.1
Maryland
4 2 2 2456 2652 8.0 2624 6.8 2588 54
North Carolina 5 1 1 1284 1290 0.5 1287 0.2 1264 1.6
Texas 6 3 1 4590 4649 1.3 4200 8.5 4563 0.6
7 2 3 2680 2900 8.2 2779 3.7 2914 8.7
Toronto 8 2 1 3904 3779 3.2 4039 3.5 3793 2.8
229 215 114
Root mean square error =
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Table 4 Work zone capacity variations with work intensity and percentage of trucks

State: North Carolina Location: Rural Work duration: Long-term
Number of lanes: 2 Number of lane closures: 1 Truck percentage: 26.2

Work intensity: 6 Work time: day Workday: weekday

Measured work zone capacity: 1284 vphpl

Work intensity 1 2 3 4 5 6
Capacity (vphpl) 1522 1515 1505 1342 1276 1265
Percentage of trucks (%) 8 12 16 20 24 26.2 30
Capacity (vphpl) 1548 1513 1409 1314 1268 1265 1264

Work intensity: 1=Lightest, 2=Light, 3=Moderate, 4=Heavy, 5=Very heavy, 6= Heaviest
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Table 5 Classification of work zone intensity

Intensity level

Qualitative description

Work type examples

1 Lightest Median barrier Installation or repair
2 Light Pavement repair

3 Moderate Resurfacing

4 Heavy Stripping

5 Very heavy Pavement marking

6 Heaviest Bridge repair
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Table 6 Variation of work zone capacities with influencing factors

Scenario No. of lane Estimated
Factors No. of lanes .
S closures capacity (vphpl)
Work zone 1(8a) 2 1 1287
conflgg]uratlo 2 (8d) 3 5 1274
3 (8e) 4 3 1171
Scers1ar|o Layout Estimated capacity (vphpl)
Work zone 1 (8a) Merging 1287
layout 2 (8b) Shifting 1193
3 (8¢c) Crossover 1112
Scenario Weather Pavement Estimated
S condition condition capacity (vphpl)
Weather/ 1 Sunny Dry 1287
Pavement 2 Rainy Wet 1213
3 Snowy Snowy/Icy 1159
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Table 7 Work zone capacities with lane width and pavement grade

Lane width Estimated work zone capacity (vphpl)
(m) With pavement grade | Without pavement grade
2.70 1054 1262
2.85 1132 1422
3.00 1225 1615
3.15 1294 1761
3.30 1327 1830
3.45 1339 1856
3.60 1342 1862
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Table 8 Work zone capacities with influencing factors

Group Scenario Location Ramp Es'gimated
S capacity (vphpl)
Work zone 3 Rural No 1287
Location/ramp 4 Rural Yes 1143
Group Scenario Work time Workday Es:umated
S capacity (vphpl)
1 Daytime Weekday 1287
Work day/time 2 Night Weekday 1164
3 Daytime Weekend 934
4 Night Weekend 847
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Input Quantification and Normalization

(18 variables)

é = Estimated work zone capacity

N = Number of clusters

p; = jth variable in the hidden layer

gi = ith normalized input variable

wij = Weight of the link connecting the ith
normalized input node to the jth node in the
hidden layer

w; = Weight of the link connecting the jth node in the
hidden layer to the output node
X; = ith input variable

[Z S-shaped spline-based nonlinear

function

Z-shaped spline-based nonlinear
function

O Bias node

@ !nput node

°® Normalized input node
OHidden node

Input layer Hidden layer

Figure 1 Topology of the neural network models for estimating the work zone capacity
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Hidden layer
Input layer (RBF layer) Output layer

Do =1 (bias) O

Legend

@) Bias @ Normalized input node

jth node of the RBF (hidden) layer (= 1, 2, ..., N)

. . Link connecting the RBF nodes
» Data transmission/clustering — 1o the output node

¢; = Vector of the jth clustering center

C = Estimated work zone capacity

o, = Influencing range of the Gaussian function
N = Number of clusters

Figure 2 Architecture of the clustering-RBFNN model for estimating the work zone capacity
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Hidden layer
Input layer
put lay! (BP layer) Output layer

Po=1 (bias)

0o =1 (bias)

Wo,1

Legend
O Bias @ Normalized input node - S Hidden node
Sigmoid activation function output for the . .
/1 jth node in the hidden layer —  Link connecting nodes
é Estimated work zone capacity —— Sigmoid activation function

C = Work zone capacity value in the output layer
N = Number of clusters

p; = jth sigmoid function (j=1, 2, ..., N)

Figure 3 Architecture of the clustering-BPNN model for estimating the work zone capacity
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Mean squared error

Mean squared error
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0.02
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Point of optimum generalization Iteration :
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data curve)

------ Checking data sets 7

——  Training data sets 7
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1400 1960 21000 2800 3500 4200 4500
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Iteration number
a) Clustering-BPNN
——  Training data sets y
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Iteration number

b) Clustering-RBFNN

Figure 4 Convergence curves for training the clustering-neural network models
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(a) Work zone configuration

Work intensity

1 2 3 4 5 6
1600 T 1 T 1 T 1 T 1 T 1600
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Percentage of trucks (%)
(b) Variation curves

Figure 5 Variation of work zone capacity with work intensity and percentage of trucks (The top
horizontal axis represents work intensity and the bottom horizontal axis represents

percentage of trucks)
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One closure

(a) Merging with one lane (b) Shifting in two lane
closure in two lane freeway freeway

(c) Crossover

_______________________ _— \
_—7 \ -----------------
________________ — closures AW
o closures X~~~ oL T T b L
L | X ) F 1 —
(d) Two closures in three- (e) Three closures in

lane freeway four-lane freeway
Figure 6 Work zone configuration and layout
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Figure 7 Variation of work zone capacities with work zone configuration, work zone layout, and

weather/pavement conditions
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Figure 8 Variation of work zone capacities with lane width and pavement grade
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(a) Configuration
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Figure 9 Variation of work zone capacities with workday and work time as well as work zone location and
ram
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