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Summary and Organization of the Report 

Periodic resurfacing, rehabilitation, restoration, and reconstruction work is needed on the 

aging highway system in the state of Ohio to maintain a desired level of service for the traveling 

public. However, temporary work zones on highways disrupt the normal flow of traffic and 

reduce the level of service. The increasing demand in maintaining an efficient highway system 

provides the impetus to develop rational and rigorous computer models to help work zone 

engineers create effective work zone traffic plans.  

The objectives of the proposed research are to develop new computational models for 

estimating the work zone capacity and queue length as a function of a large number of factors 

impacting the work zone and queue length estimation and implement them into a user-friendly 

interactive object-oriented software system for effective management of traffic in work zones. 

This research will explore the use of several recent computing and information technologies: a) 

case-based reasoning (CBR), b) neural networks, c) fuzzy logic, and d) object-orient 

programming. 

 This report consists of six parts or manuscripts as follows: 
 
Part I. CBR Model for Freeway Work Zone Traffic Management 

Part II Freeway Work Zone Traffic Delay and Cost Optimization Model 

Part III Radial Basis Function Neural Network for Work Zone Capacity and Queue Estimation 

Part IV Neuro-Fuzzy Logic Model for Freeway Work Zone Capacity Estimation 

Part V IntelliZone: Object-Oriented Model for Freeway Work Zone Capacity and Queue  

           Delay Estimation  

Part VI Clustering-Neural Network Models and Parametric Study of Work Zone Capacity  
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 In Part I, a CBR model is presented for freeway work zone traffic management. The model 

considers work zone layout, traffic demand, work characteristics, traffic control measures, and 

mobility impacts. A four-set case base schema or domain theory is developed to represent the 

cases based on the above characteristics of the problem. It includes a general information set, a 

problem description set, a solution (or control) description set, and an effects set. To improve the 

interactivity of the CBR system and its user-friendliness, a hierarchical object-oriented case 

model is developed for work zone traffic management. Three examples are presented to show the 

practical utility of the CBR system for work zone traffic management. 

 In Part II, a new freeway work zone traffic delay and cost optimization model is presented in 

terms of two variables: the length of the work zone segment and the starting time of the work 

zone using average hourly traffic data. The total work zone cost defined as the sum of user 

delay, accident, and maintenance costs is minimized. Number of lane closures, darkness factor, 

and seasonal variation travel demand normally ignored in prior research are included. In order to 

find the global optimum solution, a Boltzmann-simulated annealing neural network is developed 

to solve the resulting mixed real variable-integer cost optimization problem for short-term work 

zones. The new model can be used as an intelligent decision support system a) to find the 

optimum work zone segment length and the optimum starting time, b) to study the impact of 

various factors such as number of lane closures and darkness, and c) to observe the relation 

between the total work zone cost versus the work zone segment length and starting time in a 

quantitative and rational way quickly. 

 The work zone capacity cannot be described by any mathematical function because it is a 

complicated function of a large number of interacting variables. In Part III, an adaptive 

computational model is presented for estimating the work zone capacity and queue length and 
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delay taking into account the following factors: number of lanes, number of open lanes, work 

zone layout, length, lane width, percentage trucks, grade, speed, work intensity, darkness factor, 

and proximity of ramps. The model integrates judiciously the mathematical rigor of traffic flow 

theory with the adaptability of neural network analysis. A radial-basis function neural network 

model is developed to learn the mapping from quantifiable and non-quantifiable factors 

describing the work zone traffic control problem to the associated work zone capacity. This 

model exhibits good generalization properties from a small set of training data, a specially 

attractive feature for estimating the work zone capacity where only limited data is available. 

Queue delays and lengths are computed using a deterministic traffic flow model based on the 

estimated work zone capacity.  

In Part IV, a novel adaptive neuro-fuzzy logic model is presented for estimation of the 

freeway work zone capacity. Seventeen different factors impacting the work zone capacity are 

included in the model. They are 1) percentage of truck, 2) pavement grade, 3) number of lanes, 

4) number of lane closures, 5) lane width, 6) work zone layout (lane merging, lane shifting, and 

crossover), 7) work intensity (work zone type), 8) length of closure, 9) work zone speed, 10) 

interchange effects (proximity of ramps), 11) work zone location (urban or rural), 12) work zone 

duration (long-term or short-term), 13) work time (daytime or night), 14) work day (weekday or 

weekend), 15) weather condition (sunny, rainy or snowy), 16) pavement conditions (dry, wet, or 

icy), and 17) driver composition (commuters or non-commuters such as tourists). A neural 

network is employed to estimate the parameters associated with the bell-shaped Gaussian 

membership functions used in the fuzzy inference mechanism. An optimum generalization 

strategy is used in order to avoid over-generalization and achieve accurate results. Comparisons 

with two empirical equations demonstrate that the new model in general provides a more 
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accurate estimate of the work zone capacity, especially when the data for factors impacting the 

work zone capacity are only partially available. Further, it provides two additional advantages 

over the existing empirical equations. First, it incorporates a large number of factors impacting 

the work zone capacity. Second, unlike the empirical equations, the new model does not require 

selection of various adjustment factors or values by the work zone engineers based on prior 

experience. 

Existing computer models used to estimate queue delay upstream of the work zone have 

a number of shortcomings. They do not provide any model to estimate work zone capacity, 

which has a significant impact on the congestion and traffic queue delays. They cannot be used 

to perform scenario analysis for work zones with various characteristics such as work zone 

layout, number of closed lanes, work intensity and work time. In Part V, an object-oriented (OO) 

model is presented for freeway work zone capacity and queue delay and length estimation. The 

model is implemented into a interactive software system, called IntelliZone, using Microsoft 

Foundation Classes (MFC) and a hierarchy of multiple specialized frameworks. A three-layer 

application architecture is created to separate the application functions and classes from MFC 

classes. The high-level application domain layer is divided into packages.  IntelliZone’s capacity 

estimation engine is based on pattern recognition and neural network models incorporating a 

large number of factors impacting the work zone capacity. This research provides the foundation 

for a new generation of advanced decision support systems for effective management of traffic at 

work zones. IntelliZone allows work zone engineers to perform scenario analysis and create 

traffic management plans consistently, reliably, and efficiently. 

 In Part VI, two neural network models, called clustering-RBFNN and clustering-BPNN 

models, are created for estimating the work zone capacity in a freeway work zone as a function 
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of seventeen different factors through judicious integration of the subtractive clustering approach 

with the radial basis function (RBF) and the backpropagation (BP) neural network models. The 

clustering-RBFNN model has the attractive characteristics of training stability, accuracy, and 

quick convergence. The results of validation indicate that the work zone capacity can be 

estimated by clustering-neural network models in general with an error of less than 10%, even 

with limited data available to train the models. Extensive parametric studies have been 

performed on the influence of fifteen factors on the work zone capacity using these models. The 

results of the parametric studies of main factors impacting the work zone capacity can assist 

work zone engineers and highway agencies to create effective traffic management plans for work 

zones quantitatively and objectively.  

 It must be pointed out that the development of the computational models and their 

implementation into a software system is the major undertaking in this research project. The 

neural network models developed in this research have been trained by data obtained from 

several states. No data from Ohio were available to the authors and none was provided by 

ODOT. Neural networks are known for their high adaptability. Similar to human beings, their 

intelligence increases with additional training. As additional data become available the neural 

network models can be retrained to improve their accuracy with a relatively small effort.  
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CBR MODEL FOR FREEWAY WORK ZONE TRAFFIC MANAGEMENT 

Asim Karim1 and Hojjat Adeli2, Fellow, ASCE 

ABSTRACT: A case-based reasoning (CBR) model is presented for freeway work zone traffic 

management. The model considers work zone layout, traffic demand, work characteristics, traffic 

control measures, and mobility impacts. A four-set case base schema or domain theory is 

developed to represent the cases based on the above characteristics of the problem. It includes a 

general information set, a problem description set, a solution (or control) description set, and an 

effects set. To improve the interactivity of the CBR system and its user-friendliness, a 

hierarchical object-oriented case model is developed for work zone traffic management. The 

model is implemented into an intelligent decision-support tool to assist traffic agencies in the 

development of work zone traffic control plans and to better design and manage work zones for 

increased mobility and safety. Three examples are presented to show the practical utility of the 

CBR system for work zone traffic management. 

INTRODUCTION 

 Periodic reconstruction and maintenance of the freeway system is necessary to ensure that it 

fulfils its long-term purpose of serving the transportation needs of the public efficiently and 

economically. During the construction and maintenance operations the normal flow of traffic is 

disrupted by either a change in the freeway geometry or a temporary freeway closure. Closure of 

a freeway segment is not a feasible option on most freeways today. Therefore, reconstruction and 

                                                           
1 Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio 

State University. 

2 Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 470 

Hitchcock Hall, 2070 Neil Ave., Columubus, OH, 43210, USA. 
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maintenance operations have to be carried out without entirely closing the freeway segment and 

in close proximity to traffic flow. Work zones on freeways have to be designed and managed to 

ensure safety and mobility. The Manual on Uniform Traffic Control Device (FHWA, 2000a) 

provides guidelines for the use of traffic control devices that inform and guide motorists through 

the work zone with adequate protection for the workers. These guidelines were developed over 

the years from studies of traffic control devices and their effectiveness in improving work zone 

safety.  

 Recently, the Federal Highway Administration (FHWA) reviewed the state-of-practice in 

work zone traffic management and found that no uniform and objective procedure exists for 

quantifying the effects of various factors and determining the life cycle costs of work zone traffic 

management plans (FHWA, 2000b). They also outlined several steps that should be taken by 

state and local agencies to satisfy the expectations of the customer (the traveling public). Among 

the policy, planning, design, and management related steps outlined is the recommendation to 

“develop and/or enhance user friendly software to model work zone delay, queues and crashes; 

calculate defendable road-user costs and proposed contract time, evaluate proposed changes to 

the traffic control plan as well as analyze work zone crashes.  All software must be sufficiently 

flexible to allow for variable parameters to meet unique state/local conditions.” (FHWA, 2000b) 

Towards this end, a Microsoft Excel-based software, called QuickZone, is being developed for 

the FHWA for work zone user delay and cost quantification (Mitretek, 2000). The software 

allows planners to model work zones and their associated traffic control plans and provides them 

with basic delay and queue information that can be used for decision-making. A simple 

macroscopic input-output traffic analysis is adopted in the software to arrive at the estimates. 
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The practical usefulness of the software, however, is limited because it does not maintain a 

history of previous decisions nor does it learn from them in reaching a better decision. 

Furthermore, an input-output analysis assumes that the planner knows the effect of each work 

zone configuration in terms of the reduction in roadway capacity (maximum number of vehicles 

that can pass through a roadway segment in one hour under prevailing conditions, and expressed 

as vehicles per hour per lane). This information is usually not available and the planner has to 

make an educated guess, which may or may not be accurate thus leading to erroneous 

conclusions.  

 Case-based reasoning (CBR) is a methodology for storing and retrieving previous design 

decisions or cases and adapting them to the solution of new problem cases not found in the case 

base (Leake, 1996; Maher and Pu, 1997).  The CBR approach does not require a low-level 

physical model of the problem. Rather, in a manner similar to human reasoning and decision-

making, it uses generic and problem specific similarity metrics to induce best solutions from 

previously solved cases. This approach is appropriate for the work zone traffic management 

problem for the following reasons: (1) Accurate mathematical models of work zone traffic flow 

are not available, (2) there are only a finite number of cases to be considered, and (3) traffic 

agencies can use previously solved cases to set up the case base and then build it up gradually.  

WORK ZONES AND TRAFFIC MANAGEMENT 

 A work zone is a region within an existing freeway’s roadway where active maintenance, 

rehabilitation, and/or reconstruction work is carried out. The freeway is not closed and traffic 

and freeway work exist in close proximity to each other. A work zone thus represents a spatial 

and temporal restriction on a freeway’s roadway that impacts the normal flow of traffic 

negatively. The impact appears in the form of increased congestion, travel times, accidents, and a 
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greater level of dissatisfaction among the traveling public. Work zones are designed and 

managed to minimize these effects and the overall cost. 

 Work zone costs are often divided into three components: construction/contracting cost 

(CCC), road user cost (RUC), and maintenance of traffic cost (MTC) (Figure 1). Construction 

and contracting cost is the amount charged by the contractor for the work plus any litigation and 

liability cost. Road user cost is the result of the negative impact of the work zone on the normal 

flow of traffic. Road user cost can be quantified in several ways including delay time, queue 

length, lost productivity, fuel wastage, and pollution. There is also a non-quantifiable aspect to 

the road user cost, that of dissatisfied travelers. Non-quantifiable parameters, as the name 

indicate, are those that cannot be readily expressed in numbers. They are categorized under 

linguistic terms that are understood by traffic engineers. Maintenance of traffic cost is the cost of 

labor and equipment needed for maintaining traffic through and around work zones. It includes 

the cost of traffic control devices such as variable message signs, maintenance of alternate 

routes, construction and maintenance of temporary pavements, and public dissemination of 

information through mass media advertisements.  

 Ideally, management of work zone requires the minimization of the total cost. However, from 

the highway traffic agency’s perspective the road user cost is the most important cost to consider 

in a work zone project. All other costs are given lesser priority. The Ohio Department of 

Transportation (ODOT), for example, has identified four objectives (in no particular preferential 

order) to rate traffic control plans. These are (1) to reduce motorist complaints, (2) to maximize 

corridor capacity, (3) to minimize duration of motorist inconvenience, and (4) to maximize 

motorist/work safety. These objectives then become the basis for determining the relative 

effectiveness of new traffic control plans with respect to previously implemented plans for 
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similar work zone conditions. Currently, this procedure is done manually by traffic engineers 

based on their previous experiences. This research advocates case-based reasoning as an 

effective approach for formalizing and automating this procedure to achieve greater reliability 

and efficiency.  

CASE-BASED REASONING  

 Case-based reasoning (CBR) evolved from cognitive science research into an intelligent 

problem solving approach that relies on previous experiences in the form of cases of previously 

solved similar problems. CBR is a multidisciplinary subject that is viewed with different 

perspectives in cognitive science, artificial intelligence, and knowledge engineering (Aha, 1998). 

It is loosely based on human reasoning and problem solving which is essentially experiential and 

episode based. For example, an experienced traffic engineer can plan a work zone by recalling 

the knowledge gained from similar scenarios that he or she had solved previously and avoiding 

starting from scratch. Thus, CBR can be thought of as a high level model of human reasoning 

and problem solving, which is the view adopted in cognitive science. In artificial intelligence and 

knowledge engineering, modeling of human reasoning is not the goal per se but the basis for the 

development of computational models for the solution of real world problems. Case-based 

reasoning systems thus mimic human reasoning by retrieving and revising cases from memory 

(previous experiences) to find solutions for new problems in a given domain.  

 CBR systems differ from rule-based and model-based systems (Adeli, 1998; Adeli and 

Balasubramanyam, 1988; Adeli, 1990a&b) in that they require little low-level domain 

knowledge and rely more on general rules for retrieving and adapting saved solutions. A major 

drawback of rule-based systems is the difficulty in eliciting knowledge in the form of low-level 

rules from experts to be used by an inference engine that chains these rules to arrive at a reliable 
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solution. Model-based systems, on the other hand, assume that an accurate mathematical model 

for the problem exists. This is often not the case for complex engineering problems such as the 

work zone traffic control problem. 

 The development of a CBR system requires the specification of several procedures. A 

schematic description of these procedures is given in Figure 2. These procedures represent 

typical operations in a CBR system. As such they may also be thought of as typical CBR system 

components. Case-based reasoning is a methodology for solving problems and not a specific 

artificial intelligence technique (Watson, 1999). A typical case-based reasoning and problem 

solving cycle is shown in Figure 3. A new problem is first represented into a reference case. This 

case specifies the problem requirements, which may or may not be complete, and their relative 

importance. Using this reference case the CBR system ranks cases in the case base according to 

their degree of similarity to the reference case. If the retrieved cases do not provide a satisfactory 

solution, which is usually the case, then they are used as the starting solution to be revised and 

adapted in order to obtain an improved or satisfactory solution. The retrieval performance of a 

CBR system improves as the number of reliable cases in the case base increases. Initially, a 

functional CBR system may have only a few cases in the case base; new cases are consequently 

added as new problems are solved. This is how learning occurs in a CBR system.  

 CBR systems have been developed for design, planning, decision support, and diagnosis in 

diverse fields such as engineering, medicine, law, and business (Aha, 1998; Lenz et al., 1998; 

Maher and Pu, 1997; Leake, 1996). However, the development of a CBR system for work zone 

traffic planning and management has not been reported in the literature. 
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OBJECTIVES 

 In this research a case-based reasoning approach is used for the development of a 

decision support system for work zone traffic management with the following objectives: 

1. To provide traffic engineers with an intelligent decision support tool for design of freeway 

(and divided highway) work zone traffic control plans with the goal of reducing the road user 

cost (reduced complaints, increased corridor capacity, reduced delays, and improved safety). 

2. To develop a case base schema or domain theory to represent the cases based on factors such 

as work zone layout, traffic demand, work characteristics, traffic control measures, and 

mobility impacts,  

3. To develop work zone traffic control plans that are reliable and defendable; 

4. To archive previous experiences of work zone traffic control for quick reference, and; 

5. To serve as learning and training tool for work zone traffic control under different work zone 

scenarios. 

SCOPE AND CATEGORIZATION OF PARAMETERS 

 The scope of applicability of the CBR system for work zone traffic management is 

defined and parameters involved are categorized in this section.  

Work Zone Type 

 Several types of work zones are used in practice. The scope of the CBR system is limited 

to temporary stationary work zones on divided highways or freeways. Short-duration or mobile 

work zones (with duration of less than an hour) are not considered because standard traffic 

control plans are often adequate for maintaining traffic flow through such work zones. For a 

given work zone a separate traffic control plan is developed for each direction of flow 
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independent of flow in the other direction. This simplifies the modeling and understanding of 

work zone traffic flow by reducing the number of variables to consider.  

Work Zone Layout 

 The CBR system can consider part-width construction (lane merging), lane shifting, and 

crossover layouts. In part-width construction one or more lanes are closed to traffic and traffic is 

merged into the remaining open lanes. Such a layout is usually represented by [a, b] (a > b) 

where a and b are the number of open lanes before and after the establishment of the work zone, 

respectively. In lane shifting layout the number of lanes is not reduced and traffic is shifted 

around the work zone on temporary pavements or shoulders. No merging operation occurs in a 

lane shifting work zone layout. Crossover layouts are the combination of lane shifting and lane 

merging layouts where traffic is merged and shifted across the median unto lane(s) for travel in 

the other direction. Thus, the two streams of traffic share the same roadway in close proximity to 

each other. 

Work Characteristics 

 It has been found that the capacity of a work zone depends on the type and intensity of 

work (Krammes and Lopez, 1994; Dixon et al., 1996). This in turn affects the flow of traffic 

through work zones. The proximity of heavy equipment, workers, noise, and dust tends to reduce 

mean speeds through work zones; work of higher intensity produces a greater impact than work 

of lesser intensity. These factors are considered in the CBR system by qualitative grades of 

intensity of work specified as part of the description of the work zone scenario. 

Traffic Flow Characteristics 

 Traffic control plans are developed to facilitate the flow of traffic through and around 

work zones. To develop effective plans it is necessary to have the highway segment’s traffic 
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flow characteristics such as flow rate, traffic composition, and driver behavior. The traffic 

demand that needs to be handled can be specified by the hourly flow rate on the highway 

segment prior to the establishment of the work zone. The percentage of trucks gives an 

indication of the traffic stream’s composition, which in turn gives an indication of flow 

characteristics such as average speed. The familiarity of the drivers with the highway corridor 

also has a significant impact. This can be captured in a qualitative manner by categorizing 

highways as urban, suburban, or rural. The CBR system can consider all these factors for 

analysis of work zone traffic flow. The hourly flow rate is required while the others are optional 

if reliable data is available.  

Phases of Work 

 A work zone may go through several phases over its lifetime. Work enters a new phase 

whenever any of the parameters defining the work zone scenario changes. Changes in work zone 

scenarios are analyzed by creating a new problem description and developing traffic control 

plans for each one separately. The CBR system considers the duration of a phase to determine 

the time-dependent impact of the work zone scenario. 

Traffic Control Measures 

 It is assumed that the requirements of the Manual on Uniform Traffic Control Devices 

(FHWA, 2000a) are followed for all traffic control plans. To improve mobility further, the traffic 

agency can take further measures such as providing signed alternate routes, advanced roadside 

warning and informative messages, updates on traffic conditions through the mass media, and 

posting reduced speed limits in the work zone. These factors are considered in the CBR system 

in a qualitative manner. Note that the impact of these measures will depend on traffic flow 

characteristics in the given highway such as flow rate and driver behavior. 
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Road User Cost 

 Road user cost is the determining criterion for the selection of a traffic control plan for a 

work zone. Quantifying actual cost incurred by road users is difficult. Therefore, indirect 

measures of the negative impacts of work zones are usually used. As a measure of motorist 

inconvenience, the CBR system uses the quantitative measures of maximum queue length and 

delay time that motorists can experience as a result of a given work zone traffic control plan. 

Furthermore, the CBR system considers motorists’ complaints, corridor capacity, and safety in a 

qualitative manner. These criteria correspond to the four objectives identified by ODOT for the 

design of work zone traffic control plans. The CBR system works even when only one of these 

values is given for a work zone scenario.  

A FOUR-SET CASE MODEL FOR THE WORK ZONE TRAFFIC MANAGEMENT 

DOMAIN  

 A case model or domain theory is a template for collection of information that captures a 

problem-solution episode. In general, this information is usually partitioned into two sets: a 

problem set and a solution set. The problem set contains information that describes the problem 

whose solution is desired. This information uniquely identifies the case in the case base. The 

solution set contains information that describes the solution chosen for the problem.  

 Considering the scope of the CBR system for work zone traffic management a two-set 

case model is neither adequate nor appropriate. Each case must contain all the information 

needed for case-based reasoning plus the information required for maintaining complete records 

of previous experiences for administrative purposes. Furthermore, the outputs of the system must 

include information on the effects of the traffic control plan chosen for a given problem 

description. For these reasons, in this research we create a four-set case model for work zone 
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traffic management consisting of a general information set (G), a problem description set (P), a 

solution (or control) description set (S), and an effects set (E). Mathematically, a case is defined 

as the union of the four non-overlapping or disjoint sets as follows: 

      (1) ESPGC UUU=

where  is the set union operator (Figure 4).  U

 The general set contains information that identifies and describes the experience episode for 

future reference. Any useful information beyond that needed for the operation of the CBR 

system is included in this set so that a complete record of the previous experience episode is 

maintained in the case. The problem set contains information that defines the constants of the 

work zone traffic control problem. This information is known to the traffic engineer from 

construction plans and traffic studies and represents work zone conditions. Information in this set 

includes number of lanes, flow rate, duration of work, and intensity of work.  

 The solution or control set contains information on the work zone layout and traffic control 

measures adopted for the mitigation of traffic congestion. This information defines the solution, 

or the traffic control plan, for the work zone defined in the problem set. Information in the 

solution set includes number of open lanes, work zone layout, and traffic control measures such 

as advance motorists’ warning and signed alternate routes. The effects set contains information 

about the impacts on the traffic in the work zone. This information forms the criteria for the 

selection of one case over another as a solution for a given work zone traffic control problem. 

 In the case model for the work zone traffic management each case is uniquely identified by 

the union of the problem (P) and solution  (S) sets. Thus, two cases in the case base can have 

identical problem sets; however, their solution sets must differ. This situation may represent two 

experience episodes where the work zone traffic control problem is identical but a different 
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traffic control plan is adopted for each with possibly different impacts. When querying the 

system the traffic engineer can specify as much of the information in the problem and solution 

sets. The more information the traffic engineer provides, the more specific will be the cases 

retrieved by the CBR system. It should be pointed out that it is not necessary to specify all the 

information in the problem set because the CBR approach does not require exact matching for 

retrieval. 

 Equation (1) defines a case as a set of information. The case base can then be defined as the 

union of all the cases  iiiii ESPGC UUU=

       (2) U
i

iCZ =

such that 

 ji, j, iSPSPCC jjiiji ≠∀≠⇔≠     ;UU  (3) 

Equation (3) ensures that no two cases in the case base have the same problem and solution sets 

and all cases are unique. The case base given by the set Z captures the domain knowledge needed 

for solving the problem. The effectiveness of the CBR system increases as the number and 

diversity of cases in the case base increases encompassing the entire knowledge domain defined 

by its scope of applicability. The CBR system, however, can work even with only a few cases in 

the case base.  

HIERARCHICAL OBJECT-ORIENTED CASE MODEL 

 The representation of a case as a union of information sets is most appropriate for the design 

of a CBR system. This representation partitions the variables involved in the problem according 

to their use in the CBR system: input, output, indexing, retrieval, and adaptation. However, this 

partitioning is not appropriate for human comprehension and the user-friendliness of the CBR 
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system. Over the years, traffic engineers have developed a body of knowledge for work zone 

traffic control that categorizes information in a manner similar to that presented in a previous 

section. This categorization is based on key elements or components of the work zone traffic 

control problem and is generally more specialized than the four-set categorization defined for the 

set representation of the case model. A case model that provides such a level of detail is useful 

for the design of an effective user interface for the CBR system. An object-oriented 

representation is used to create such a user-interface. 

 A hierarchical object-oriented case model is developed for the CBR system for work zone 

traffic management (Figure 5). A case in the system, represented by a Case object uses four 

lower level objects, General, Problem, Solution, and Effects, corresponding to the four sets 

defined in the set model of the case. The General object uses three lower level objects, 

Description, Time, and Cost that collectively encapsulate general information needed to keep a 

complete record of the experience episode. The General object can own additional objects 

depending on the information needs of the user. 

 The Problem object uses three lower level objects, Layout, Traffic Flow Characteristics, and 

Work Characteristics. These objects encapsulate the work zone traffic control problem or the 

pre-existing geometry and flow conditions for which a traffic control plan is desired. The 

Solution object encapsulates the traffic control plan. It uses two lower level objects: Layout and 

Traffic Control Measures. The Layout object encapsulates information about the geometric 

conditions after the establishment of the work zone while the Traffic Control Measures object 

encapsulates the steps taken to alleviate traffic congestion. Work zone traffic control measures 

are often divided into those taken inside the work zone and those taken outside the work zone. 

The lowest objects Inside Work Zone and Outside Work Zone capture this division of 
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information. Traffic control measures taken inside a work zone include imposing speed limits, 

widening lanes, and erecting gawk screens, while those taken outside the work zone include 

warning motorists in advance and diverting traffic through alternate routes. The Effects object 

encapsulates information on the effects of the traffic control plan, which is essentially the road 

user cost. The Road User Cost object describes the impact of the traffic control plan on 

motorists. 

 The most specialized objects in the object-oriented case model for work zone traffic 

management (the leaf nodes in Figure 5) define the categories readily understood by traffic 

engineers. Information in these categories is merged to form the four-set case model used by the 

CBR system. 

CASE REPRESENTATION 

 In the case models presented in the previous section a case is defined as a collection of 

information objects. The information in the objects is identified by linguistic terms that are 

generally understood by humans but are imprecise for information processing. Information or 

knowledge representation involves the specification of semantics to information entities that 

enables machines to use well-defined operations to process them.  

 Since cases and objects in the CBR system for work zone traffic management are a collection 

of facts rather than rules or functions, an attribute-value scheme is used for information 

representation. An attribute-value representation of information is defined by three elements: 

• An attribute or field name that identifies the information entity and gives it a meaning that 

can be understood by humans; 

• A type that specifies the type of the attribute, and; 

• A value taken from the domain that specifies the current instantiation of the attribute.  
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Common attribute types include choice (free-form text), alphabetic, number, integer, and 

positive number. A range can also be specified to further constrain and elucidate the domain 

defined by the type. A range specification may be a list of values, a range of values, a hierarchy 

of values, or values of a certain unit.  

 The attribute-value representation A of an information entity can be written as a 3-tuple 

variable: 

    (4) { valuetypenameA ,,= }

Given an attribute-value representation A the elements are defined by the functions Name(A) = 

name, Type(A) = type, and Value(A) = value = v. Therefore, a case Ci in the CBR system for 

work zone traffic management can be represented by a collection of attribute-value 

representations of all the information entities it contains. This can be written as 

 { }i
N

iii
i AAAAC ,,,, 321 K=    (5) 

where  is the jth attribute-value representation in case i and N is the total number of attributes 

in a case. The name and type elements of a given attribute-value representation i (i = 1, N) are 

identical in all cases in the case base; the value elements, however, may be different. The 

attribute-value representations of the information entities that constitute a case in the CBR 

system for work zone traffic management and corresponding to the General, Problem, Solution, 

and Effects sets are defined in Tables 1 to 4. Only two types of values are used for 

representation: choice and number.  

i
jA

SIMILARITY MEASURES 

 The degree of similarity between numeric attribute i of two cases j and k is defined as  
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),(Similarity =   (6) 
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where  and 0)(value ≠= j
i

j
i Av ⋅  denotes the absolute value. In the CBR system for work zone 

traffic management all values of numeric attributes are non-zero and positive. Thus, Eq. (6) 

computes the degree of similarity as the ratio of the minimum value to the maximum value, 

which ranges from greater than 0 to 1.  

 The degree of similarity between choice (free-form text) attribute type i of two cases j and k 

is defined by the following rule: 

 IF  ( j
i  appears in k

i ) OR k
iv  appears i ivv  v n ) 

S =k
i

j
i AA   ELSE 

 t is, 

milarity j
i

k
i AA .  

ists of two components: a reference case and a weight vector. 

he reference case R is defin

(  j

 THEN (imilarity 0),(Similarity =k
i

j
i AA  (7) 1),

Since the choice type represents free-form text it may consist of numbers, alphabets, and special 

characters (such as spaces). Note that the similarity operations are commutative, tha

),(Si),(Similarity k
i

j
i AA =

CASE RETRIEVAL 

 An interaction with a CBR system starts with the formulation of a query that describes a 

situation for which a solution is desired. Based on this query the system retrieves cases from the 

case base as potential solutions to the problem. The retrieval process is guided by the degree of 

similarity (or match) of the query to the cases in the case base. In the CBR system for work zone 

traffic management, the query cons

T ed as 

 { }N321 AAAA ,,,,R K=     (8) 

This equation is similar to Eq. (5). Thus, a reference case has the same collection of attributes-

value representations as other cases in the CBR system. The traffic engineer using the CBR 

system inputs values for the attributes in the reference case to describe the work zone scenario. 
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The weight vector wi (i = 1, N) attaches an importance to the similarity of each attribute in the 

retrieval process. The suitability of the cases in the case base as solutions to the query is 

determined by a case or global similarity measure. This is computed as the weighed sum of the 

similarities of the respective case and reference case values. The case similarity function for case 

 as d with a given reference case R is defined as i, compare

∑

∑

=

=

×
= N

j
j

N

j

Ri

i

AAw
RC

1

1

),(Similarity
),(Similarity  (9) 

jjj

w

o 1 where 0 indicates no similarity while 1 denotes full 

m

 of attribute-value pairs. Induce-It supports 

 

Case similarity scores range from 0 t

si ilarity. Based on the case similarity scores the cases in the case base are ranked and presented 

to the user. Cases with the largest score represent potential solutions for the problem at hand. 

CREATION OF THE CASE BASE 

 The CBR system for freeway work zone management has been implemented in Induce-It, a 

software shell for developing case-based reasoning systems (Induce-It, 2000). Induce-It is based 

on the Microsoft Excel spreadsheet software system and relies on its user interface, database, and 

programming capabilities to provide an environment for developing and using a CBR system. 

Induce-It provides built-in capabilities for case representation, indexing, storage, retrieval, and 

adaptation allowing the developer to concentrate on domain information collection and problem 

formulation. Cases are represented as a sequence

several numeric and textual field types including number, choice (free form text), and user-

specified. A specific region in the spreadsheet is reserved for the case based, where cases appear 

in rows while case field values appear in columns. 
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 Based on the case models presented in the preceding sections a prototype CBR system for 

work zone traffic management is developed using Induce-It. The case base of the CBR system 

presently includes twenty cases representing common work zone scenarios and their 

corresponding traffic control plans. The cases were created from information obtained from the 

Ohio Department of Transportation. The information consisted primarily of qualitative data such 

as work zone classification, traffic control measures, planning goals, and development 

he work zone), maximum queue length, and maximum delay time are derived from 

sic fixed information 

procedures. The quantitative data used in the cases such as the freeway traffic flow rate (in the 

absence of t

human experience of work zone traffic control. The sample case base is sufficient for testing the 

prototype system and can be extended easily as new cases become available.  

CREATION OF WORK ZONE TRAFFIC CONTROL PLANS USING THE CBR 

SYSTEM  

 The flow chart of steps involved for creation of a suitable work zone traffic control plan 

using the proposed CBR system is shown in Figure 6. When a traffic engineer wants to create a 

traffic control plan for a given work zone scenario, he starts with some ba

about the work zone under consideration such as the number of lanes and flow rate. This 

information is fed into the CBR system by responding to queries made by the system. This is 

done in an iterative manner through a number of interactive sessions until a satisfactory solution 

case is obtained or a retrieved case is adapted to obtain a desired solution.  

 Initially the reference case is created with the minimum information needed to describe 

the work zone situation, that is, the number of lanes and the flow rate. This ensures that a wide 

spectrum of cases is retrieved by the system. If after evaluating the retrieved cases based on the 

case scores no suitable solution is found the reference case is modified in the subsequent 
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interactive sessions by adding more information known about the work zone scenario. In 

general, the reference case is modified in the sequence shown in the top-left corner of Figure 6 

be given a larger weight. Also, a weight can indicate the reliability of a 

easure the CBR system user can 

r modifying a case to obtain an improved solution.  

ter several interactive sessions yield no desired solution 

from the case base. Using the retrieved cases as guide the traffic engineer can modify them to 

where at each subsequent interactive session the information in the next lower box is added to 

the reference case. This procedure ensures that the solution is narrowed down gradually and 

minimizes the possibility of missing good solutions by first starting with minimum required 

input.  

 The traffic engineer using the CBR system can use his judgement to assign weights to 

various attributes. The value of each weight indicates the significance of the corresponding 

attribute. For example, if it is desired that at least two lanes be open then the number of open 

lanes attribute should 

given value. For example, if the flow rate is not known accurately then a lower weight should be 

assigned to it. In general, the weights need not be changed from one interactive session to the 

next. However, the CBR system user can modify them for the same reference case to tune the 

output of the system.  

 The retrieved cases are compared according to their case similarity scores computed by 

the CBR system. A higher score indicates a closer match to the reference case and the weights 

inputted by the user. In addition to this automatic suitability m

also evaluate the retrieved cases for their impacts on motorists, the number and type of traffic 

control measures, and the maintenance of traffic cost. This evaluation will guide the traffic 

engineer to modify the reference case and the associated weights, accepting a case as the desired 

solution, o

 Case adaptation is attempted af
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arrive at a desirable solution. This solution may then be included in the case base for future 

perusal.  

ILLUSTRATIVE EXAMPLES 

 In this section the CBR system for work zone traffic management is used to solve three 

examples. Figures 7 to 10, considered side-by-side, show the CBR system’s user interface. They 

display the attribute-value representation of the information, the reference case, the weights, and 

the case similarity scores. Figures 7-10, respectively, show the portion of the case base 

corresponding to the General, Problem, Solution, and Effects objects of the case model. Each 

case is displayed in a separate row, starting from row 11. The field names and values appear in 

columns, starting from column C. The reference case is defined in row 8 and the weights 

e relative importance of the values in the reference are specified in row 7.  The 

ontrol plan is to be 

indicating th

suitability of the cases in the case base as potential solutions to the reference case is indicated by 

the case score, displayed in column A (Figure 7).  

Example 1 

 This example illustrates the use of the CBR system as a decision-support tool for creation 

of a work zone traffic control plan. Given the description of the work zone scenario as defined 

by a reference case the traffic engineer uses the CBR system in the manner shown in Figure 6 to 

retrieve the most relevant case(s) from the case base. The work zone scenario (reference case) is 

described in Table 5. The freeway has three lanes each carrying an average flow of 1400 

vehicles per hour. Each phase of construction lasts for 6 hours and it is of medium intensity. 

These are the constants of the work zone scenario for which a traffic c

developed. In addition to these constants, it is also desired that two lanes be kept open at all 
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times, the layout be of merging type, and a signed alternate route be provided to avoid excessive 

congestion. This work zone scenario is typical for lane resurfacing projects. 

 The CBR system is consulted in 3 interactive sessions. The reference case attribute 

values and weights chosen for each interactive session and their corresponding case similarity 

scores are summarized in Tables 5 and 6, respectively.  In the first interactive session, the 

reference case is created with the values for the number of lanes and flow rate only, and each is 

given equal importance. As seen from Table 6, two cases, Case 12 and Case 17, match exactly 

with the reference case with a similarity score of 1. This scenario, however, is too general and 

many work zone scenarios have these characteristics but may require different traffic control 

plans because of differences in other characteristics.  

 In the subsequent second interactive session, the values for the work phase duration and 

work intensity are added to the reference case. The weights are modified to reflect the greater 

relative importance of flow rate and number of lanes in the choice of a traffic control plan. The 

phase duration is given more importance than the work intensity because the former has a more 

significant impact on the work zone traffic compared with the latter. In general, the longer the 

duration of the work zone the greater the extent of the congestion. This congestion, however, 

does not increase without bound as motorists tend to change their driving habits and reduce 

demand at the work zone site. For this second interactive session Case 17 has the highest score 

followed closely by Case 18. As seen from Figures 8 and 9 these two cases have similar work 

zone scenarios and traffic control solutions even though they are for different types of 

construction work (Case 17 is for culvert work and Case 18 is for pavement marking). However, 

the minor differences that exist in the problem and solution descriptions of these two cases result 

in a significant difference in the impacts on traffic. One has a queue length of 3.22 km (2 miles) 
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and the other has a queue length of 0.81 km (0.5 miles) (column Z in Figure 10). For this reason 

the third interactive session is made more specific by adding the values for number of open 

lanes, layout, and alternate route to the reference case (Table 5). These values represent the 

ch cases, a reference case is created with number of lanes set to 4, number of open 

, and layout set to ‘Merging.’ The case similarity scores for this example are given 

3 for number of lanes, 1 for number of open lanes, ‘Xover’ for layout, and ‘Rural’ for driver 

desired characteristics of the traffic control plan that the traffic engineer feels can reduce traffic 

impacts. Case 1 (presented in row 11 of Figures 7 to 10) has the highest score in this interactive 

session (Table 6) and thus provides the best traffic control plan for the given work zone scenario.  

Example 2 

 The CBR system for work zone traffic management can also be used for information 

retrieval and engineer training. For this purpose, a reference case is created that contain values 

desirable in the retrieved cases. The weights are normally set all equal to 1. Suppose the engineer 

wants to study all work zone scenarios that have a merging layout from 4 lanes to 2 lanes. To 

retrieve all su

lanes set to 2

in Table 6. Cases 5 and 6 with a case score of one match the reference case. Note that for such 

training information retrieval, only cases with scores of 1 are considered because exact matches 

are desired.  

Example 3 

 An advantage of CBR systems for knowledge engineering is that the case base can be 

developed incrementally and easily by the end user. A fully functional CBR system may have 

only a few cases initially; the user can add more as he or she encounters new problems not found 

in the case base. To illustrate this, suppose the user wants to develop a traffic control plan for a 3 

to 1 crossover layout in a rural location. Interacting with the system with reference case values of 
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behavior produces the case similarity scores shown in the last column of Table 6. No exact 

matches are found. Also, the case similarity scores have a narrow spread with no single case 

icates that a satisfactory solution case does not exist in the case 

n

ing 

stem

prove 

of traffic control plans a multi-paradigm computational model is 

script is based on a research project sponsored by the Ohio Department of 

ing ODOT documentations is greatly appreciated. 

dominating the others. This ind

base. For situations like these, the user can develop a traffic control plan from scratch (aided by 

the cases in the case base) and then add the new case to the case base for future perusal. 

CONCLUDING REMARKS 

 Traffic agencies are faced with the challenge of planning, designing, and operating work 

zones that maximize safety and minimize motorists’ inconve ience. The most pressing need is to 

alleviate excessive congestion by developing work zone traffic control plans that efficiently 

handles traffic flow through and around work zones. Presently, no rigorous procedures exist for 

the development of work zone traffic control plans.  In this research, a case-based reason

sy  is developed as an intelligent decision-support tool to assist traffic engineers in the 

development of work zone traffic control plans. The CBR system developed in this research is 

the first decision support tool to help traffic engineers create work zone traffic control plans.  

 The effectiveness of a work zone traffic control plan is measured by the delay 

experienced by motorists and/or the length of queue formed on the upstream side. To im

objectivity and reliability 

currently being developed that maps traffic flow and work zone characteristics to delay time and 

queue length. The model will be integrated into the CBR system presented in this article.  
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Table 1 Attribute-value representation of information in the General object 
 
Name   Description Type Value representation Example
ID Case identification Choice Free-form alphanumeric OH-5235 
Description Brief description of the work zone 

traffic control project 
Choice Free-form alphanumeric Resurfacing of the 

southbound lane 
Freeway/Direction Freeway identification number and 

direction 
Choice  Designation/

[NB, SB, EB, WB] 
I-71/NB 

Location Geographical location of freeway Choice County, city Franklin, Columbus 
Start time Start time of the project Choice Year, month 2000, 02 
Duration Duration of the project Number Days 30 
CCC Construction/contracting cost Number Thousand dollars 25000 
MTC Maintenance of traffic cost Number Thousand dollars 500 
Comments Additional comments Choice Free-form alphanumeric Completed successfully 
NB: northbound  SB: Southbound  EB: eastbound  WB: westbound 
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Table 2 Attribute-value representation of information in the Problem object 
 
Name   Description Type Value representation Example
No. of lanes Number of open lanes prior to the 

creation of the work zone 
Number  Positive integer 3 

Flow rate Average flow at work zone site Number Vehicles/hour/lane 1500 
Percent trucks Percentage of heavy vehicles or trucks 

in traffic stream 
Number  Percent 5

Driver behavior Classification of driver behavior Choice [Urban, Rural] Urban 
Phase duration Duration for the work phase Number Hours 4 
Work Intensity Classification of work intensity Choice [High, Moderate, Low] Moderate 
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Table 3 Attribute-value representation of information in the Solution object 
 
Name   Description Type Value representation Example
No. of open lanes Number of open lanes after the creation 

of the work zone 
Number  Positive integer 2 

Layout Work zone layout or configuration Choice [Merge, Shift, Crossover] Merge 
Speed limit Posted speed limit within work zone Number 1.61×km/hour (niles/hour) 45 
Lane width Width of lanes within work zone Number 0.305×m (ft) 11 
Screens Gawk/glare screens to prevent driver 

distractions 
Choice   [Yes, No] No

Advance warning Advance warning of work zone before 
exits and alternate routes 

Choice    [Yes, No] Yes

Real-time info Real-time info on traffic congestion 
ahead of work zone 

Choice    [Yes, No] No

Signed alternate 
route 

Signed alternate routes ahead of work 
zone 

Choice    [Yes, No] Yes
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Table 4 Attribute-value representation of information in the Effects object 
 
Name   Description Type Value representation Example
Queue length Maximum queue length observed 

during the work phase 
Number 1.61×km (miles) 2 

Delay time Maximum delay time experience during 
the work phase 

Number   Vehicle-hours 2500

Complaints Amount of motorists’ complaints  Choice [High, Medium, Low] Low 
Safety Level of motorist and worker safety Choice [High, Medium, Low] High 
Corridor capacity Reduction in corridor capacity Choice [High, Medium, Low] Medium 
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Table 5 Reference case (work zone scenario) and weights for Example 1 
 
Attribute name Value Weights 
  Interactive 

session 1 
Interactive 
session 2 

Interactive 
session 3 

No. of lanes 3 1 2 2 
Flow rate 1400 

vph/lane 
1 2 2 

Phase duration 6 NS 1.5 1.5 
Work intensity Medium NS 1 1 
No. of open lanes 2 NS NS 2 
Layout Merging NS NS 1.5 
Signed alternate route Yes NS NS 1 
NS = no value is specified; vph = vehicle per hour 
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Table 6 Case scores for the illustrative examples 
 

Case Example 1 Example 2 Example 3 
 Interactive 

session 1 
Interactive 
session 2 

Interactive 
session 3 

  

Case 1 0.992 0.973 0.974 0.991 0.964 
Case 2 0.986 0.957 0.897 0.964 0.929 
Case 3 0.986 0.957 0.897 0.964 0.929 
Case 4 0.984 0.925 0.850 0.982 0.964 
Case 5 0.987 0.943 0.945 1.000 0.929 
Case 6 0.982 0.942 0.913 1.000 0.964 
Case 7 0.992 0.936 0.877 0.973 0.929 
Case 8 0.980 0.951 0.907 0.982 0.929 
Case 9 0.984 0.958 0.897 0.964 0.929 
Case 10 0.984 0.954 0.893 0.964 0.929 
Case 11 0.988 0.970 0.862 0.964 0.964 
Case 12 1.000 0.975 0.945 0.991 0.929 
Case 13 0.986 0.961 0.885 0.964 0.964 
Case 14 0.984 0.954 0.893 0.964 0.929 
Case 15 0.986 0.957 0.881 0.982 0.929 
Case 16 0.980 0.939 0.864 0.982 0.929 
Case 17 1.000 0.988 0.957 0.991 0.929 
Case 18 0.998 0.983 0.953 0.991 0.929 
Case 19 0.985 0.972 0.921 0.988 0.929 
Case 20 0.977 0.958 0.882 0.982 0.964 
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Figure 1 Freeway construction work zone costs and factors affecting them 
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Figure 2 Elements of case-based reasoning 
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Figure 3 Typical CBR system processing cycle 
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Figure 4 Four-set case model for the CBR system for work zone traffic management 
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Figure 5 Object-oriented case model for the CBR system for work zone traffic management
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Figure 6 Procedure for creation of work zone traffic control plans using the CBR system for work zone traffic 
management 
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Figure 7 CBR system user interface showing reference case, weights, case scores and sample case base for work 
zone traffic management corresponding to the General object 
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Figure 8 Sample case base for work zone traffic management corresponding to the Problem object 
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Figure 9 Sample case base for work zone traffic management corresponding to the Solution object 
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Figure 10 Sample case base for work zone traffic management corresponding to the Effects object 
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Part II 

Freeway Work Zone Traffic Delay and Cost Optimization Model 
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FREEWAY WORK ZONE TRAFFIC DELAY AND COST OPTIMIZATION MODEL 

Xiaomo Jiang3 and Hojjat Adeli, Fellow, ASCE4 

ABSTRACT: A new freeway work zone traffic delay and cost optimization model is presented 

in terms of two variables: the length of the work zone segment and the starting time of the work 

zone using average hourly traffic data. The total work zone cost defined as the sum of user 

delay, accident, and maintenance costs is minimized. Number of lane closures, darkness factor, 

and seasonal variation travel demand normally ignored in prior research are included. In order to 

find the global optimum solution, a Boltzmann-simulated annealing neural network is developed 

to solve the resulting mixed real variable-integer cost optimization problem for short-term work 

zones. The new model can be used as an intelligent decision support system a) to find the 

optimum work zone segment length and the optimum starting time, b) to study the impact of 

various factors such as number of lane closures and darkness, and c) to observe the relation 

between the total work zone cost versus the work zone segment length and starting time in a 

quantitative and rational way quickly.  

INTRODUCTION 

Freeway work zones result in congestion and traffic delays leading to increased driver 

frustration, increased traffic accident, and increased road user delay cost. The traffic delay costs 

to users have been mathematically modeled and evaluated based on simplifying assumptions. 

Since the freeway work zone segment length has a significant impact on both the agency and 

                                                           
3 Graduate Research Associate, Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio 

State University. 

4 Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 470 

Hitchcock Hall, 2070 Neil Ave., Columubus, OH, 43210, USA. 
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user costs, efforts have been made to find the optimum freeway work zone segment length so as 

to minimize the costs to users and freeway agencies.  

McCoy and Mennenga (1998) developed a simple model to find the optimum work zone 

segment length for minimum work zone costs in a rural four-lane freeway with one lane closure. 

Based on the average daily traffic (ADT), it takes into account the construction cost, user delay 

cost, vehicle operating cost, and accident cost. A Microsoft Excel-based model has recently been 

developed for predicting the work zone delay, named QuickZone Delay Estimation Program 

(MITRETEK, 2000) based on the deterministic queuing model for each network link in the work 

zone. The hourly estimation in QuickZone takes into account expected time-of-day utilization 

and seasonal variation in travel demand. QuickZone, however, does not have any optimization 

capability for finding the optimum work zone segment length or starting time of the project.  

Recently, Chien and Schonfeld (2001) presented a simplified and useful model for 

estimating the delay cost using the average daily traffic (ADT) and finding the optimum work 

zone segment length in a four-lane freeway with one lane closure. They assume that if the work 

zone capacity is more than the ADT, no queue is formed. However, since the traffic flow varies 

within a day, this assumption does not hold at least during part of the day. Furthermore, the 

starting time of the work zone in a day (work during the day versus evening) and seasonal 

demand have significant effects on user delays and work zone costs. Chien and Schonfeld 

(2001), however, have tackled a problem of great practical significance in managing freeway 

work zones, which is to find the optimum work zone segment length.   

A NEW TRAFFIC DELAY AND COST OPTIMIZATION MODEL FOR FREEWAY 

WORK ZONES 

Assumptions 
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In this article, a new macroscopic computational model is presented for estimating traffic 

delays in freeway work zones based on the flow theory using neural network and optimization 

techniques. The model uses hourly traffic flow and takes into account the following factors: 1) 

number of lane closures (Nl), 2) length of the work zone segment (l), 3) anticipated hourly traffic 

flow of the freeway approaching the work zone, 4) starting time of the work zone (time of the 

day in hour), 5) darkness, 6) seasonal variation in travel demand, and 7) the duration of the work 

zone in hours (D).   

The following assumptions are made to formulate the problem: 

1) All the vehicles travel at the same speed of  through the work zone, and at the same speed 

of a  approaching and leaving the work zone.

wV

V  

function of the work zone segment length (l) and is expressed in the following form: 

2) The road user delay cost is represented by an average cost per vehicle hour cvh expressed in 

dollars per vehicle hour. 

3) The anticipated hourly traffic flow approaching the work zone in vehicle per hour (vph) at 

time t of day (measured in hours), , is known. An intersection close to work zone or a 

residential street in an urban area creates traffic diversion and affects the anticipated hourly 

traffic flow approaching the work zone. The model includes the effect of an intersection 

indirectly as long as the anticipated hourly traffic flow includes this effect as a percentage of 

diverted traffic. 

tf

4) The freeway work zone capacity, , is assumed to be constant for any given number of lane 

closures. Also, the freeway capacity outside the work zone, , is assumed to be constant.  

wc

0c

5) The agency or maintenance cost ( ) for maintaining a work zone segment is a linear MC
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lcNcC lM )( 21 +=  (1) 

cwhere 1 represents the fixed cost independent of work zone segment length and c2 represents 

the average additional maintenance cost per work zone kilometer per lane.  

6) 

of the work zone segment length and is expressed in the following form

where d1 represents the setup time independent of work zone segment length and d2 

The cost and time linearity assumptions 5 and 6 are also made by Chien and Schonfeld 

(2001). However, in this work we have included an additional parameter, that is, the number 

Free

The deterministic delay method is used to estimate the number of vehicles per hour in a 

queue. The user delay time consists of the queue delay time upstream of the work zone (tq) 

and the moving delay time through the work zone (tm). The total user delay time, , during 

the duration, D, of th

It should be pointed out that these quantities are computed for all the road users and therefore 

expressed in terms of vehicle hours. 

Within a specific time period 

The time period required to complete the maintenance for the work zone is a linear function 

: 

      ldNdD l )( 21 +=  (2) 

represents the additional maintenance time per work zone kilometer per lane. 

of lane closures in the formulations.  

way Work Zone Traffic Delay Model 

dt

e construction at the work zone is 

mqd ttt +=  (3) 

t∆  (in hours), if the anticipated hourly traffic flow 

approaching the work zone ( ts f∆α ) exceeds the work zone capacity ( ), a queue forms. wc
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That is, a queue forms when wts cf >∆α , where sα  is the seasonal demand factor used to 

adjust the short-term traffic flow for seasonal variations. For example, ODOT specifies a 

value for each day of the week and for every month of the year depending on a classification 

of highways. For annual average daily traffic (AADT) used for the whole year, the seasonal 

demand factor is equal to one. For various days of different months, ODOT specifies a value 

in the range of 0.76 and 1.72 (http://www.dot.state.oh.us/techservsite). When the real-time 

traffic flow measurement is used, 0.1=sα . The number of vehicles in a queue within the 

specific period t∆ , tQ∆ , is equal to 

wtst cf −= ∆∆Q α  (4) 

and the cumulative number of vehicles ttT ∆+  in a queue at time tt ∆+  is 

∑
∆+

tt
ttt

i

where repre  the sta

When 

=
∆∆+ =

tt

QT  (5) 

it  sents rting time at the work zone in hours ranging from 1 to 24. 

wts cf <∆α , the queue delay time is zero and the existing queue starts to 

disappear. In that case 

0=∆tQ  (6) 

and 

}0 ,max{ sTT ttt −=∆+  (7) 
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where s represents the queue red

than one day).  

When the work zone duration is long term (defined as work zones with duration of 

more than one day), the queue reduction factor is (Figure 1a)  

uction. This parameter is formulated differently depending 

on whether the work zone has a long duration (more than one day) or a short duration (less 

tsw fcs ∆−= α  (8) 

When the work zone duration is short-term (Figure 1b), the queue reduction factor is  

ts fcs ∆−= α0  (9) 

where 0c  represents the freeway capacity in the absence of any work zone.  

 The queue delay time, , over the work zone duration, D, is obtained as qt

∑
−+

= ⎠⎝ 2tt i

e value of the function inside the 

parentheses in Eq. (10). The total area under all queue waves during the work zone duration 

represents the work zone queue delay, tq. A queue wave is the hill-shape curve representing 

the variation of the cumulative number of queuing vehicles over time from the start of the 

formation of one queue to the total dissipation of that queue. For example, there are two 

queue waves in Figure 1(a) and only one in Figure 1(b). The queue reduction factor over the 

 (b).  

The moving delay time,  is exp

travel times on a freeway with and without a work zone. Within a given period 

∆+ ⎟
⎞

⎜
⎛ ∆

+
=

1Dt
ttt

q

i

t
TT

t  (10) 

The shaded area in Figures 1(a) and (b) represents th

time period t∆ , s, is also shown in Figures 1(a) and 1

mt , ressed as a function of the difference between the 

t∆ , if the 
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anticipated hourly traffic flow approaching the work zone exceeds the work zone capacity 

( wts cf >∆α ), the maximum traffic flow ugh the work zone is w . Then, ththro e moving 

, over the given period, 

c

delay time, mt∆ t∆ , is expressed as 

tc
VV aw ⎠⎝

llt wm ∆⎟⎟
⎞

⎜⎜
⎛

−=∆  (11) 

When the anticipated hourly traffic flow approaching the work zone is less than the work 

zone capacity ( wts cf <∆α ), the moving delay time mt∆ , over the given period t∆ , becomes 

tfllt ∆⎟
⎞

⎜
⎛

−=∆ )(α  (12) 
VV ts

aw
m ⎟

⎠
⎜
⎝

∆

 work zone duration is Thus, the total moving delay time during the

∑
−+

=

 is substituted from Eq. (11) or (12) depending on whether within any given time 

period, the anticipat

Freew

intenance cost including the setup and removal 

cost (Cm). 

∆=
1Dt

tt

i

i

tt  (13) 

where 

mm

mt∆

ed hourly traffic flow approaching the work zone exceeds the work zone 

capacity or not. 

ay Work Zone Cost Optimization Model 

The freeway work zone cost is defined as the sum of three components: the user delay cost 

(Cd), the accident cost (Ca), and the work zone ma

madw CCCC ++=  (14) 

All these three components are defined in dollars per length (kilometer) of the work zone.  
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The user delay cost per work zone kilometer per lane is the total user delay time, dt , 

multiplied by the average cost per vehicle hour cvh divided by the work zone segment length l 

and the nu ber of lane closures in the work zone, lN :  m

l

dvh tc
=  (15) d lN

C

The traffic accidents considered in this study are those occurring in the work zone and 

queue areas. The accident cost  per work zone kilometer per lane incurred by the traffic flow 

pas

veh

acc

a

sing through the work zone is determined from the number of accidents, an , per 100 million 

icle hour, multiplied by the product of the increased delay, dt , and the average cost per 

ident, ac , divided by the work zone segment length and the number of lane closures: 

C

l
a lN

tcn
810

daanC
α

=  (16) 

In this equation, nα , is a factor to take into account the effect of darkness and working at 

night. Increasingly more work zones are performed at night to ameliorate the impact of 

construction on road users and reduce the traffic disruptions. On the other hand, the evening 

construction results in reduced worker productivity at work zone, increased construction 

costs for utilities and labor fee, and increased risk of traffic accidents. A darkness factor of 

greater than one ( 0.1>nα ) is used for construction work at night. Its value is determined 

based on the previous experie cen  as well as the management plan in the practical application. 

The accident cost u

Schonfeld, 2001): number of lane closures and the darkness factor. 

sed in our formulation and represented by Eq. (16) includes two new 

factors not considered in previous research (McCoy and Mennega, 1998; Chien and 
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T r the work 

e average construction cost per work zone kilometer per lane, as noted in Eq. (1). The 

average m

 work zone segment length and the number of lane 

closures modified by the d

he maintenance cost in the work zone includes the setup and removal cost fo

zone and th

aintenance cost mC  per work zone kilometer per lane is the total maintenance cost, 

MC  (defined by Eq. 1), divided by the

arkness factor nα : 

2
1 c

lN n
n

m α
c

C
l

α
+=  (17) 

Substituting Eqs. (15) to (17) into Eq. (14) yields the work zone cost function  per work zone 

kilometer per lane.  

Min

         

wC

Thus, the freeway work zone cost optimization model is expressed as follows: 

imize 

28

8

1 )
10

10
(1 ct

ccn
c

lN
CCCC nd

vhaan
n

l
madw α

α
α +

+
+=++=  (18) 

 (20) 

             

Subject to the following constraints: 

0≥dt  (19) 

where dt  is the total user delay time as expressed by 

minll ≥

∑∑∑
===

⎟
⎠

⎜
⎝

∆+∆=∆+⎟
⎠

⎜
⎝

∆=
22

    
tt

m
tt

m
tt iii

tttt
−+

∆+
−+−+

∆+ ⎞⎛ +⎞⎛ +
+=

111 Dt
ttt

DtDt
ttt

mqd
iii TTTT

ttt
 (21) 
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and minl  is the minimum work zone segment length based on practical considerations. For 

example, a minimum work zone segment length of 0.1 km is chosen in the examples 

presented in this article.  

There are two variables in the optim

odel presented in this section is general and can be used 

for both short-term wo

(with

ization formulation presented in this section: the work 

zone segment length (l), a real variable, and the starting time of the work zone in hours (ti), an 

integer variable. The computational m

rk zone (with duration of less than one day) and long-term work zone 

 duration of more than one day). In the following sections, we present an approach for 

solving this mixed real variable-integer nonlinear programming problem for short-term work 

zones.  

WORK ZONE COST FUNCTION FOR SHOT-TERM WORK ZONES 

 For practical reasons, the work zone segment length is chosen in pre-selected increment of 

β  kilometers (or miles), for example, β  = 0.05 km or 0.1 km. The starting time of a short-term 

wo e

maximum work zone segment length for short-term work zones is obtained from Eq. (2) by using 

the um work zone duration of 24 hours for the work duration, D:  

rk zon  can take an integer value between 1 and 24 for the twenty-four hours of a day. The 

maxim

)24( 1
2

max d
Nd

l
l

−=  (26) 

If the work zone segment length increm

1

ent of β  = 0.05 km is chosen, the number of possible 

work zone segment lengths becomes 

05.0
minmaxminmaxn

llll −
==

β
 (27) 

−
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In the freeway work zone cost formulation presented in this article, the starting time of 

         

work zone, it , affects the total work zone cost. The user delays in the work zone vary depending 

on the starting time of the work zone. For short term work zones, for any given work zone 

segment length li, there are 24 possible starting times for the construction work, corresponding to 

the 24 hours in a day, and the total work zone cost is obtained by substituting Eq. (21) into Eq. 

(18): 

2

1

8

8

1 210
101 TTccn

Nl n

Dt

tt
mn

li
w

i

i

α
⎥
⎦

⎤
⎢
⎣

⎡

⎠
⎞

⎝
⎛ ++ cttcC tttvhaan αα +⎟⎜ ∆+∆+= ∑

−+

=

∆+   

         ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎜
⎝

∆+∆
++

= ∑ ⎞⎛−+

=

∆+ ntttvhaan cTTccn 110

li
n

Dt

tt
m

li Nl
ctt

Nl

i

i

2

1

8

8

210
      

α
α

α
  (28) 

BOLTZMANN NEURAL NETWORK WITH SIMULATED ANNEALING FOR WORK 

ZONE COST OPTIMIZATION 

A combined Boltzmann neural network-simulated annealing algorithm is developed to 

solve the mixed real variable-integer cost optimization problem for short-term work zones. The 

goal is to find the global optimum solution for the work zone segment length and starting time.   

Simulated Annealing 

 

 Most optimization algorithms for solution of nonlinear programming problems with 

many hills and valleys encounter the so-called hill-climbing problem where the solution can get 

stuck in a local optimum, say one of the valleys in the minimization problem. A number of 

approaches have been proposed in the recent literature to overcome this problem and find the 

true global optimum solution such as genetic algorithms (Adeli and Cheng, 1993; Adeli and 

Hung, 1995) and simulated annealing (Kirkpatrick et al. 1983). Simulated annealing is inspired 
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by the metallurgical process of annealing where a metal is heated to near melting point and then 

cooled slowly and intermittently until an equilibrium is achieved for an optimum material 

microstructure with desirable structural properties such as ductility. The material microstructure 

may be changed easily and rapidly at high temperatures with high kinetic energy. But, sudden 

cooling of the material can result in undesirable brittleness. In contrast, a gradual and carefully 

controlled cooling operation can result in a material with optimum microstructure. This process 

may be explained as removing local pockets of stress energy to allow the metal to escape from 

local elevated energy minima and reach a global energy minimum (Aleksander and Morton, 

1991).      

 Metaphorically, simulated annealing for solution of nonlinear programming problems 

 be considered as maximizing strength and minimizing brittleness 

by min

lley in search 

of the

energy from the previous iteration, are also maintained for additional move in search of the 

with multiple local optima can

imizing an energy functional (Mehrotra et al., 1997). As such, this approach requires the 

definition of an energy function and a temperature parameter to be lowered gradually during the 

optimization iterations. The selection of a candidate solution in successive iterations and the 

corresponding modification of the temperature parameter is guided by a probabilistic 

distribution. This process helps the solution to jump from one valley to the next va

 true global optimum.  Thus, a typical simulated annealing algorithm is implemented in two 

nested loops, an outer loop where the temperature parameter is reduced and an inner loop where 

direction of iterations is determined. In every iteration, solutions in the vicinity of the current 

solution are explored.  Solutions that decrease the energy functional are maintained for 

additional moves. Further, solutions that increase the energy function with an acceptable 

selection probability, expressed as a function of the temperature parameter and the change in the 
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global optimum. The probability of acceptance is chosen to be larger with a larger value of the 

temperature parameter, similar to the metallurgical annealing process where the material 

ral Network 

robability distribution till 

the n

rk zone cost optimization problem is presented in Figure 2. The network 

consi l 

Botlzmann machine, th

microstructure is modified more easily at higher temperatures.  

Boltzmann Neu

Artificial neural network algorithms are known to be effective for solution of 

complicated pattern recognition problems (Adeli and Hung, 1995; Adeli, 2001). They have also 

been used for solution of optimization problems. Examples include the Hopfield neural network 

(Hagan, et al., 1996; Mehrotra, et al., 1997; and Pham and Karaboga, 2000) and the neural 

dynamics model of Adeli and Park (Adeli and Park, 1998; Adeli and Karim, 2001)  

A Hopfield neural network is known to converge to a local optimum. Thus suffering from 

the same hill-climbing problem stated earlier. To overcome this shortcoming, Ackley et al. 

(1985) introduced the so-called Boltzmann machine by introducing noise in the network 

trajectory to avoid the problem of entrapment in a local optimum. The concept of noise in the 

Boltzmann machine is analogous to the concept of temperature in the simulated annealing 

algorithm. The magnitude of the noise is reduced steadily based on a p

etwork converges to the global optimum. A second distinction between the Hopfield 

network and the Boltzmann machine is that the former has no hidden layer but the latter does.     

Architecture of Boltzmann Neural Network with Simulated Annealing for Work Zone Cost 

Optimization 

The architecture of the Boltzmann-simulated annealing neural network for solving the 

short-term freeway wo

sts of three layers: input layer, hidden layer, and output layer. Unlike the conventiona

e neural network created in this research has a set of storage nodes in 
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additional to the standard Boltzmann network nodes. The inputs to the neural network are the 

hourly traffic flows approaching the work zone (fi, i =1,24). These values are used to calculate 

the 24 vectors of work

vector contains the values for nine quantities: the work zone segment length (l), starting time (t ), 

queue delay time (tq), moving delay time (tm), user delay time (td), user delay cost (Cd), accident 

cost (Ca), maintenance cost (Cm), and the total work zone cost (Cw). The Boltzmann network 

node

 zone information CI(i,n) (i=1,24) assigned to the storage nodes. Each 

i

s in the input layer are all assigned a value of one (xi =1, i=1,24). 

The number of nodes in the hidden layer is equal to the number of possible work zone 

segment lengths, n, as determined by Eq. (27). Similar to the input layer, the local minimum 

work zone information for any given work zone segment length is stored in the vector CH(j) (j= 

1, n), which contains the values for the same nine quantities mentioned in the previous 

paragraph. The Boltzmann network nodes in the hidden layer are randomly assigned values of 

xj= -1 or +1 (j= 1, n).  

For training the Boltzmann network, we define an energy function in the following form: 

∑=
=

xxwE  (29) 

the hidden layer. It is defined as 

n

j
jiji

1
,

where w  represents the weight of the link connecting the Boltzmann input node i to node j in ij

∑
=

=
24

2
ijw              i=1, 24; j=1, n (30) 

1
)(

)(

i
ijw

jiw

C

C

in which rep

jth work zone segment length. 

resents the total work zone cost at the input node i corresponding to the ijwC )(  
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To find the global optimal solution for the work zone cost optimization problem we need to 

 the global minimum solution for the energy function defined by Eq. (29). This is achieved 

ulated annealing in two phases (Figure 2). In the first phase, simulated annealing 

inimum total work 

find

by using the sim

is applied between the input layer and the hidden layer yielding the local m

zone cost solutions corresponding to various work zone segment lengths. In the second phase, 

simulated annealing is used between the hidden layer and the output layer to obtain the global 

optimum solution for the work zone cost optim

ne cost 

optimization problem is

ization problem.  

The flow diagram for the Boltzmann-simulated annealing algorithm for the work zo

 shown in Figure 3. In phase one of the simulated annealing, the energy 

function (Eq. 29) is initially evaluated by summing over all hidden nodes but using the values of 

the weights associated with only one randomly selected input, i, for any hidden node, j. One 

input node xi and one hidden node xj are selected randomly and the value of the selected hidden 

node xk is changed from –1 to 1 or from 1 to -1. Because other hidden nodes j ( kj ≠  ) are not 

selected for updating the energy function at this step, the resulting change of energy becomes 

)()1( ,, txxwtxxwE kikiklkl −+=∆  

)()1(      ,, txwtxw kkikkl −+=  (31) 

k kwhere )1( +tx  and represent the values of the selected kth hidden node in the new and  

the selected lth input node. If the energy change, 

)(tx

last steps, respectively, and lx  is E∆ , is 

 link connecting the selected kth 

B

negative the change is accepted and the weight of the

oltzmann hidden node to the node in the output layer, *
kw , is set to the weight of the link 

connecting the selected input node i to the selected hidden node k, wik: 
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ikk ww =*  (32) 

, is positive the change is accepted with a probability of   If the energy change, E∆

τ/1 Ee
p ∆−+

 (33) 

where parameter, τ, is the so-called temperature parameter in the simulated annealing algorithm. 

The initial temperature is set to some high value (e.g, 100 in this research) and is reduced in 

subsequent iterations by certain percentage (e.g., 1% in this research). A local optimum work 

zone cost solution is found when the system reaches an equilibrium point at a temperature τ 

when the probability p  approaches one. This solution is re

1
=

presented as the weights between of 

the links connecting the nodes in hidden layer and the output node.  

 In phase two of the simulated annealing, a similar process is performed between the 

hidden layer and the output layer yielding the global minimum work zone cost solution with the 

corresponding global optimum work zone segment length and starting time.  

APPLICATION AND EXAMPLES 

Example One: Four-lane Freeway with One Lane Closure 

The data for this example, summarized in Table 1, are chosen to be the same as those of 

Chien and Schonfeld (2001) for the sake of comparison, with the addition of values for darkness 

and seasonal demand factors. This example is a four-lane freeway with one-lane closure. Chien 

and Schonfeld (2001) use the average daily traffic only. In this work, the anticipated hourly 

traffic flow approaching the work zone is used.  

Example 1A (ADT=1000 vph) 

The anticipated hourly traffic flows approaching the work zone for this example for the 

duration of one day are given in Table 2, with an average daily traffic (ADT) of 1000 vph, the 
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same value used in Chien and Schnofeld (2001). The hourly an ulative numbers of vehicles 

in a queue calculated by the new computational model are presented in Table 2. The cumulative 

number of queuing vehicles as a function of the time of the day is also displayed graphically in 

Figure 4. Two queue waves are observed in this figure.   

Chien and Schnofeld (2001) report an optimum work zone segment length of l=1.4 km  

(corresponding to minimum work zone cost) and duration of D=10.4 hours for the example data 

presented in Table 1 with the ADT of 1000 vph. Using the same workzone length of 1.4 km and 

duration of 10.4 hours, the traffic delay estimation model presented in this article yields a 

maximum queue delay time ( qt ) of 18,624 vehicle-hours and maximum moving delay time ( mt ) 

of 149 vehicle-hours when the maintenance work is started at 8 A.M. In contrast, when the 

maintenance work is started at hour 19 (7 P.M.) in the evening, the queue delay is zero and the 

moving delay time is reduced to 56 vehicle-hours. Chien and Schonfeld (2001) report a queue 

d cum

delay time of 0 and moving delay time of 141.5 vehicle-hours (Table 3). The current 

investigation indicates that the starting time of the work zone affects the user delay time 

significantly. This factor is absent in the recently published work zone delay estimate models but 

is taken into account in the new model. 

Assuming that the work zone duration is less than one day (short-term work zone), a 

maximum work zone segment length of 65.3max =L  km is obtained from Eq. (26). The 

maximum number of possible work zone segment lengths from Eq. (27) is then 72=n . A 

darkness factor of 0.2=nα  is assumed for all the examples in this article. Figure 5 shows the 

variation of the work zone costs versus the work zone segment length. It should be pointed out 

that the data for each given work zone segment length corresponds to a local minimum solution 

for that particular work zone segment length for various starting times. The optimum work zone 
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segm

 segment length is 0.35 km resulting in the global minimum total work zone cost of 

8314

work zone costs versus the work zone segm

odel 

em to study the relation between the total work 

zone cost versus the work zone segm

ent length corresponding to the minimum total work zone cost is the global optimum 

solution. In this example, it is found that the maintenance cost is a significant factor in the total 

work zone cost. The global optimum starting time is found to be 8 A.M. and the global optimum 

work zone

7.55 $/km. Figure 6 shows the variation of work zone costs versus the starting time of the 

day for the global optimum solution. This figure demonstrates that selection of the starting time 

using the same work zone segment length of 0.35 km has a significant impact on the total work 

zone cost.   

The work zone traffic delay estimate model presented in this article also allows you to 

choose the starting time of the work zone. This is a desirable feature as the optimum starting 

time provided by the model may not be acceptable for non-economical reasons. For instance, 

assume a starting time of 9 A.M. is selected for this example. Figure 7 shows the variation of 

ent length. The model yields an optimum work zone 

segment length of 0.20 km resulting in minimum total construction cost of 84941.92 $/km. This 

cost is about 2% higher than the global optimum solution presented in Figure 5. The new m

can be used as an intelligent decision support syst

ent length and starting time quickly.  

Example 1B (ADT=2000 vph) 

This example uses the same data as example 1A with the exception of ADT= 2000 vph. 

The anticipated hourly traffic flows approaching the work zone in a day with ADT of 2000 vph 

as well as the queue delay results obtained from the new computational model are presented in 

Table 2.  
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In

queue delay of 44804 vehicle-hours and moving delay of 66.1 vehicle hours (Table 3) without 

considering the effects of the starting time of the work zone.  

The new model yields a global optimum value of 1.05 km for the work zone segment 

length and a global optimum starting time of 21 o’clock (9 P.M.) resulting in a global minimum 

work zone cost of 162310.22 $/km for a work duration of 8 hours.  

Example Two: Six-lane Freeway 

This example is created in this research to demonstrate the capability of the new work zone 

traffic delay estimate model to account for the number of lane closures. A six-lane freeway with 

three lanes in every direction is considered. Data in Table 1 are used in this example with the 

exception of values for freeway capacity in the absence of work zone (a value of 5400 vph is 

used in this example), work zone capacity, number of open lanes, and number of lane closures. 

The anticipated hourly traffic flows approaching the work zone in a day are presented in Table 4.  

Example 2A - One-lane Closure

itially, for the sake of comparison, we use the same work zone segment length of 0.34 km 

and duration of 4 hours given in Chien and Schnofeld (2001). The new work zone traffic delay 

estimation model yields a maximum queue delay time qt  of 38,579 vehicle-hours and maximum 

moving delay time t  of 35 vehicle-hours with a staring time of 3 A.M. However, if the 

maintenance work is performed at midnight the model yields the minimum queue delay of zero 

and the minimum moving delay time  of 4 vehicle-hours. Chien and Schnofeld (2001) report 

m

mt

 

 This example has only one lane closure. The work zone capacity is assumed to be 2980 

vph per Highway Capacity Manual (HCM, 1985). The hourly and cumulative numbers of 

vehicles in a queue calculated by the new computational model are presented in Table 4.  Similar 

to example 1, in this example, the maintenance cost is a significant factor in the total work zone 
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cost. The global optimum work zone segment length is 1.05 km and the global optimum starting 

time is 7 A.M. resulting in the global minimum total work zone cost of 85107.26 $/km and 

duration of 8 hours. For one-lane closure, having the work done during the day is more 

economical than having it done during the night.  

Example 2B - Two-lane Closures 

This example has two lane closures. The work zone capacity is assumed to be 1170 vph per 

Highway Capacity Manual (HCM, 1985). The hourly and cumulative numbers of vehicles in a 

queue calculated by the new computational model are presented in Table 4.  Figure 8 shows the 

variation of the work zone costs versus the work zone segment length. The global optimum work 

zone segment length is 0.55 km and the global optimum starting time is 3 A.M. resulting in a 

global minimum total work zone cost of 15900.70 $/km and duration of 5 hours. In this example, 

the user delay cost becomes the dominant work zone cost for work zone segment lengths of 

, having the work done during the night is more 

econo

ured by North Carolina 

greater than about 2.7 km. For two-lane closure

mical than having it done during the day. But, compared with example 2A the cost is 

increased substantially because the darkness increases the maintenance cost resulting in a 

considerable increase in the total work zone cost. 

By comparing the results obtained for examples 2A and 2B, it is concluded that having the 

work done during the day with starting time of 7 A.M. with one lane closure is the most 

economical solution for the work zone project at hand.  

Example Three: Four-Lane Highway with One-lane Closure in North Carolina 

In this example, actual traffic data measured in a work zone in a four-lane highway in the 

state of North Carolina with one lane closure are used. The hourly traffic flows approaching a 

work zone on route NC 147, 0.1 miles south of SR 1171, meas
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Depa

tor, and the seasonal demand 

c delay and cost optimization model is applicable for both short-term 

nteger short-term work zone cost optimization problem.  

 presented demonstrate that the starting time of the work zone has a 

ore 

rtment of Transportation in a day (August 28, 2000) are presented in Table 5. Data in Table 

1 are also used in this example except for values of freeway capacity in the absence of work zone 

(a value of 2400 vph is used) and work zone capacity (a value of 1000 vph is used). The hourly 

and cumulative numbers of vehicles in a queue calculated by the new computational model are 

also presented in Table 5. The new model yields a global optimum value of 0.20 km for the work 

zone segment length and a global optimum starting time of 7 resulting in a global minimum work 

zone cost of 87954.99 $/km for a work duration of 3 hours. Figure 9 shows the variation of work 

zone costs versus the starting time of the day.   

CONCLUSION AND FINAL COMMENTS 

A new freeway work zone traffic delay estimate and total work zone cost optimization 

model is presented in this article. In contrast to the previous published works that are based on 

the average daily traffic flow the new model is based on average hourly traffic flow. A total 

work zone cost function is defined as the sum of the user delay, accident, and maintenance costs. 

It takes into account the number of lane closures, the darkness fac

factor. The work zone traffi

(less than one day) and long-term (more than day) work zones. The model yields the global 

optimum values for the work zone segment length and the starting time of the work zone. A 

Boltzmann-simulated annealing neural network model is developed to solve the resulting mixed 

real variable-i

Numerical examples

significant impact on queue formation and total work zone cost. Thus, the proposed model based 

on the average hourly traffic flow allows the work zone traffic engineer to prepare a m

effective traffic control plan for a given work zone based on detailed and accurate quantitative 
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information in a systematic manner resulting in substantial cost savings and minimum disruption 

s two-

ion work zone engineer can observe the impact of 

sonal 

 work zone segment length and starting time for long-term work zones. Further 

LEDGMENT 

 for Example 3 is greatly 

ence, Vol. 9, pp. 147-169. 

 pp. 126-142. 

Adeli, H. and Hung, S.L. (1995), Machine Learning - Neural Networks, Genetic Algorithms, and 

of traffic for the travelling public. Using the proposed model, the work zone traffic engineer will 

be able to find the answer to important what-if questions, such as one-lane closure versu

lane closure or selection of the starting time of the day systematically and quickly.  The 

examples presented show how the transportat

the number of lane closures and the darkness. The model also incorporates a seasonal demand 

factor. That means the work zone engineer can use the model to find out the impact of sea

demand on the user delay and total work zone costs. The model is currently being extended to 

find the optimum

extension would be to include the impact of detours in the model.  
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son with the addition of values for darkness and seasonal 
demand factors)  

Variable Description Values 

Table 1 Input data for example 1 (chosen to be the same as those of Chien and Schnofeld, 
2001, for the sake of compari

0c  Free ncway capacity in the abse e of the work zone 2,600 vph 
wc  Work zone capacity 1,200 vph 
aV  Average approaching speed 88.00 km/h 
wV  Average work zone speed 48.00 km/h 
an  Number of accidents per 100 million vehicle hour 40 acc/100 vh m
ac  Averag ident co 142,000 $/acc e acc st 
vhc  Averag icle del st per hou 12.00 $/vpe veh ay co r h 

1c  Fixed set up cost 1,000 $/zone 
2c  Averag ntenan  per wo ne kilo er lane 0,000 $e mai ce cost rk zo meter p  8 /km 
1d  Fixed setup time  h/zone2  
2d  Averag ntenan  per kilo ter  h/km e mai ce time me 6
LN  Number of lane closures in the work zone  1
oN  Numb  er of open lanes in the work zone 1
nα  Darkn tor (Co ease ra r work t) .0 ess fac st incr tio fo at nigh 2
sα  Season and fa 0 al dem ctor 1.
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Table 2 Qu e delay results obt  new computational m ple 1 (Four-

lane freeway with one lane closure) 

 
cipated traffic flow 

zone, ft (vph) 

be hic
the queue per hour

(vph) 

mulative num  
hicles in the queue per 

hour, T (vph) 

eu ained from the odel for exam

Anti
approaching the work 

Num r of ve les in 
, Q 

Cu
ve

ber of
T
(Hour 

ple 1A Example 1B le 1 p ampl ample 1B

ime 

of day) 
Exam Examp A Exam le 1B Ex e 1A Ex

1 180 0 0 0 0 0 36
2 50 100 0 0 0 0 
3 117 234 0 0 0 0 
4 420 840 0 0 0 0 
5 833 1681 0 481 0 481 
6 1145 2290 0 1090 0 1571 
7 2161 4322 961 3122 961 4693 
8 821 1642 0 442 582 5135 
9 1020 2075 0 875 402 6010 
10 930 1660 0 460 132 6470 
11 910 1831 0 631 0 7101 
12 1320 2651 120 1451 120 8552 
13 1620 3242 420 2042 540 10594 
14 1728 3456 528 2256 1068 12850 
15 2154 4325 954 3125 2022 15975 
16 2420 4840 1220 3640 3242 19615 
17 2021 4142 821 2942 4063 22557 
18 1460 2920 260 1720 4323 24277 
19 850 1700 0 500 3973 24777 
20 700 1425 0 225 3473 25002 
21 400 800 0 0 2673 24602 
22 280 560 0 0 1753 23962 
23 240 480 0 0 793 23242 
24 210 420 0 0 0 22462 

 
 
 
 
 
 
 
 
 
 

Table 3 Traffic delay estimate results (unit: vehicle-hours) 
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Example 1A Example 1B  

ADT=1000 vph, l=1.4 km ADT=2000 vph, l=0.34 km 
New model New model 

Work zone 
traffic delay 

m

 

2  

Chien & 

Schonfeld

(2001) 
Max Min 

Chi
Sch

(

en & 
onfeld 
001) Max Minodel 

Queue delay 4 8  0 18624 0 4 804 3 579 0

Moving delay .5 149 56 66.1 35 4 141
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Table 4 Queue delay results obtained from the new computational model for 
 Example 2 (Six-lane freeway with one-lane closure or two-lane closures) 

Number of vehicles in the 
queue per hour, Q (vph)

Cumulative number of 
vehicles in the queue per 

hour, T (vph) 

 

Time 
(Hour of 

 

Anticipated 
traffic flow 

approaching the 

(vph) (one-la e (one-lane (two-lane 
day) work zone, ft Example 2A Example 2B Example 2A Example 2B 

ne (two-lan
 closure) closures) closure) closures) 

1 682 0 0 0 0 
2 431 0 0 0 0 
3 304 0 0 0 0 
4 323 0 0 0 0 
5 312 0 0 0 0 
6 580 0 0 0 0 
7 1934 0 764 0 764 
8 2986 6 6 2580 1816 
9 2666 0 0 4076 1496 
10 3067 87 87 5973 1897 
11 2681 0 511 0 7484 1
12 3035 55 55 9349 1865 
13 2887 0 17 0 11066 17
14 2761 0 91 0 12657 15
15 3133 153 63 153 14620 19
16 3503 523 33 676 23 16953 
17 3586 606 16 1282 24 19369 
18 4027 1047 57 2329 28 22226 
19 2609 0 39 1958 14 23665 
20 1895 0 25 873 7 24390 
21 1591 0 21 0 4 24811 
22 1492 0 322 0 25133 
23 1423 0 253 0 25386 
24 833 0 0 0 25049 
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Table 5 Queue delay results obtained from the new computational model for 

ple 3  
Time 

(Hour of 
day) 

 

Anticipated traffic 
flow approaching 
the work zone, ft 

(vph) 

Number of vehicles in 
the queue per hour, 

(vph) 

Cumulative number of 
vehicles in the queue 

per hour, T (vph) 

 Exam

Q

1 137 0 0 
2 76 0 0 
3 29 0 0 
4 42 0 0 
5 45 0 0 
6 198 0 0 
7 660 0 0 
8 1055 55 55 
9 784 0 55 
10 1335 335 390 
11 1144 144 534 
12 1366 366 900 
13 1326 326 1226 
14 1238 238 1464 
15 1109 109 1573 
16 1167 167 1740 
17 1321 321 2061 
18 1535 535 2596 
19 975 0 2571 
20 639 0 10 22
21 420 0 1630 
22 389 0 1019 
23 280 0 299 
24 320 0 0 
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Figure 3 Flow chart of the hybrid Boltzmann neural network-simulated annealing model used to solve the 
mixed real-integer nonlinear programming problem  
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Figure 4 Cumulative numbers of queuing vehicles for Example 1A  
(Four-lane freeway with one lane closure, ADT=1000 vph) 
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Figure 5 Variation of the work zone costs versus the work zone segment length for example 1A  
 (Four-lane freeway with one lane closure, ADT = 1000 vph) 
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Figure 6 Variation of work zone costs versus the starting time of the day for  
the global optimum solution of 0.35 km for the work zone segment length and 8 A.M. for the starting time for example 1A 

 (Four-lane freeway with one l ne closure, ADT = 1000 vph) a
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        Figure 7 Variation of the work zone costs versus the work zone segment length at the starting time 9 A.M. 
for example 1A (Four-lane freeway with one lane closure, ADT = 1000 vph)
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Figure 8 Variation of the work zone costs versus the work zone segment lengt ple 2B  
 (Six-lane freeway with two-lane closures) 
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ABSTRACT. An adaptive computational model is presented for estimating the work zone 

capacity and queue length and delay taking into account the

number of open lanes, work zone layout, length, lane width, percentage trucks, grade, speed, 

k intensity, darkness factor, and proximity of ramps. The model integrates judiciously the 

hematical rigor of traffic flow theory with the adaptability of neural network analysis. A 

ial-basis function neural network model is developed to learn the mapping from quantifiable 

 non-quantifiable factors describing the work zone traffic control proble

work zone capacity. This model exhibits good generalization properties from small set of 

ning data, a specially attractive feature for estimating the work zone capacity where only 

ited data is available. Queue delays and lengths are computed using a deterministic traffic 

 model based on the estimated work zone capacity. The result of this research is b

to develop an intelligent decision support system to help work zone engineers perform scenario 

lysis and create traffic management plans consistently, reliably, and efficiently. 

                                                     
raduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic 

ence, The Ohio State University. 

5 G

Sci

Profe6 ssor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State 

University, 470 Hitchcock Hall, 2070 Neil Ave., Columubus, OH, 43210, USA. 

 

 90



 

INTRODUCTION 

 Recognizing the need for serving the public’s present and future transportation needs the 

Transportation Equity Act for the 21st Century (FHWA, 1998) has earmarked increased funding 

for maintenance, rehabilitation, and reconstruction of the nation’s aging highway system. It is 

therefore expected that the number of work zones would increase in the future impacting further 

the normal operation of the highway system. The primary goal of the various departments of 

ansportation (DOTs or traffic agencies) is to enhance mobility and safety at all times on the 

ffic control devices and 

t, work intensity, diversion of traffic, and 

driver behavior.  

tr

highway system. Over the years the quality and uniformity of tra

procedures have improved. However, the numbers of work zone related fatalities and injuries 

have remained practically the same and the traveling public has become increasingly frustrated 

with additional mobility restrictions (FHWA, 2000). A large population is exposed to work 

zones and their negative impacts. This in turn generates widespread negative sentiments towards 

the public agencies responsible for providing efficient and safe transportation services to the 

public. 

 As work zones on today’s highways are becoming an increasingly frequent and unavoidable 

reality traffic agencies are faced with the challenging problem of effectively planning and 

managing work zones in their jurisdictions. This is a complex multifaceted problem that requires 

life cycle cost analyses at the system level. An analysis at the system level, however, will only be 

useful when a reliable model for the impact of a given work zone on traffic flow is available. In 

current practice, work zone engineers rely on their judgment based on previous experiences to 

quantify work zone traffic impacts and to make decisions. Work zone engineers have to consider 

a large number of factors such as work zone layou
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  effectiveness of a work zone traffic management plan (TMP) may be measured by the 

delay experienced by motorists and/or the length of queue formed on the upstream side. To 

improve the objectivity and reliability of a work zone TMP a reliable model is needed that maps 

traffic flow and work zone characteristics to delay time and queue length. For such a model to be 

useful in practice it must have the following characteristics: 

• It should be based on a simple underlying prin

The

ciple of traffic flow. Complicated physical 

and/or psychological models of traffic flow are unrealizable and intractable for practical 

purposes. Also, the data input needed for some of these models are not readily available thus 

introducing a source of error. A simple model, on the other hand, can be reasoned with and 

‘calibrated’ to produce reliable results for different work zone scenarios. 

• It should consider the major factors that affect traffic flow through work zones. For example, 

work zone capacity should not be an input but rather should be determined from an input of 

work zone characteristics. Consequently, the model should be able to process both 

quantifiable and non-quantifiable (or linguistic) variables involved in the analysis. 

• It should be flexible in the sense that it can be adapted and extended for the analysis of 

different work zone traffic control scenarios. In particular, its applicability should not be 

restricted to a single roadway geometry and/or work zone layout. To accomplish this the 

model should be capable of learning from input/output data and not be based solely on a 

physical/psychological model of traffic flow. This is essential because real world behavior 

under all situations can not be modeled satisfactorily by conventional mathematics only. 

 With these guidelines in mind, a new adaptive computational model is developed for 

estimating the work zone capacity as well as queue delay and length based on the conservation 

principle of traffic flow. The model integrates judiciously the mathematical rigor of traffic flow 
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theory with the adaptability of neural network analysis. A radial-basis function neural network 

(RBFNN) model is developed to learn the mapping from quantifiable and non-quantifiable 

factors describing the work zone traffic control problem to the associated work zone capacity. 

Queue delays and lengths are computed using a deterministic traffic flow model based on the 

estimated work zone capacity. The goal of this research is to help create an intelligent decision 

support system to help work zone traffic engineers create TMPs consistently and efficiently. 

 

REVIEW OF WORK ZONE TRAFFIC CONTROL PLANNING 

 A work zone is a region within an existing highway’s roadway where active maintenance, 

rehabilitation, and/or reconstruction work is carried out. The highway is not closed and traffic 

flow and highway work exists in close proximity to each other. A work zone thus imposes a 

spatial and temporal restriction on a highway’s roadway that negatively impacts the normal flow 

of traffic. These impacts appear as increased congestion, travel times, accidents, and a greater 

level of dissatisfaction among the traveling public. Work zones are planned and managed to 

minimize these impacts and the overall cost. A primary concern of traffic agencies is creation of 

TMPs for long-term stationary work zones (with duration of more than one day) because they are 

of high impact and visibility with a lot at stake for all parties involved. Development of such 

plans requires a careful analysis of traffic flow through the work zone to determine the best work 

phasing and work zone layout. As mentioned earlier, the overall problem of planning and 

managing of work zones in a highway system is complex requiring life cycle cost analyses. 

Nowadays, however, the primary focus of traffic agencies is the creation of a TMP for a given 

work zone that minimizes queue delays and lengths.  
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 Construction and maintenance work zones on highways have been studied for more than 

30 years in an effort to develop safer and effective TMPs. A survey of the literature that 

specifically deals with mobility of traffic through work zones reveals a mix of empirical studies 

and mathematical analyses. Empirical studies collect and analyze data from work zones in an 

effort to develop an understanding of traffic demand, work zone capacity, work zone layout, 

 is affected significantly by work 

traffic mitigation strategies, and traffic congestion.  

 By analyzing data from 161 observations of freeway queuing Cottrell (2001) presents an 

empirical model of queuing delay using linear regression analyses. Equations are presented that 

relate traffic flow and capacity variables to queue delay variables. The model, however, is for 

recurrent congestion only and does not consider congestion caused by work zones and their 

associated variables. Cassidy and Mauch (2001) also study recurrent congestion using 

cumulative plots of traffic count and show that the density in long queues that span several 

interchanges decreases in the upstream direction. In an earlier study Cassidy and Bertini (1999) 

analyze discharge patterns from freeway bottlenecks and conclude that discharge rates are nearly 

constant when taken cumulatively. These two articles provide general insights into queuing 

behavior caused by bottlenecks that may be applicable to work zones also. By analyzing data 

from 24 work zones Dixon et al. (1996) present capacity values of work zones for both urban 

and rural freeways. They found that work zone capacity

intensity, rural and urban location, and darkness. The presence of a work zone forces many 

regular motorists to choose alternative routes even when a diversion is not specified explicitly. 

This phenomenon, called natural diversion, can play a significant role in work zone traffic flow 

analysis. Natural diversion is studied by Ullman (1996) for the particular situation where the 

freeway has continuous frontage roads. Krames and Lopez (1994) provide recommendations for 
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work zone capacity after analyzing data from 33 work zones. They present a single base work 

zone capacity for different work zone configurations. This base value can be modified to reflect 

the effects of work intensity, traffic composition (percentage of trucks), and the presence of 

ramps just upstream of the work zone. The Highway Capacity Manual (FHWA, 2000) represents 

e current state of practice in traffic analyses summarizing the results of empirical studies in the 

neral 

ock wave 

 continue along the highway. Queuing analysis can be deterministic or stochastic, and it 

may use either macroscopic or microscopic traffic flow parameters. Deterministic queuing 

th

past 20 years. Its coverage of work zone capacity, however, is brief and limited to a few ge

recommendations.  

 Empirical studies are generally limited in scope and not readily applicable to decision-

making where different scenarios have to be analyzed objectively. They do provide valuable 

insights but such insights are case-specific and have to be captured in a generalized 

computational model to be of value to traffic agencies in the development of TMPs. Several 

models have been proposed in the literature for the determination of queue lengths and delay 

times associated with work zones. In general, these models are based on one of two approaches 

of traffic flow theory: shock wave analysis and queuing analysis (May, 1990). Sh

analysis traces shock waves, or boundaries demarcating different flow regimes, in time and space 

to determine regions of queued (congested) and uncongested flow. Shock wave analysis is 

deterministic in nature and uses only two macroscopic traffic flow parameters, traffic demand 

and roadway capacity, as input. It does not take into account the dependence of traffic demand 

and work zone capacity on many other parameters and therefore is not very reliable for work 

zone traffic flow analysis. In queuing analysis, a work zone is modeled as a service process 

where vehicles arriving at the work zone experience some delay (queue delay) before they are 

able to
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analysis suffers from the same shortcoming as shock wave analysis while stochastic analysis 

requires traffic distribution information that is often not available in practice. A microscopic 

stochastic model of traffic flow provides the most detailed analysis possible. The accuracy of 

such a model, however, depends on the accuracy of human-vehicle-environment behavior 

models, which are still not well understood and are an area of research. 

 Chien and Schonfeld (2001) present an optimization model for the optimal length of a work 

zone on a four-lane divided highway (2-lanes in each direction) with one lane in each direction 

closed. The objective function is the total cost including user cost, accident cost, and agency 

maintenance cost. The model assumes that work zone capacity is constant and independent of 

work zone characteristics. Islam and Seneviratne (1993) evaluate the suitability and effectiveness 

of four traffic planning software tools for the evaluation of TMPs, while Sadegh et al. (1988) 

o ork zones on arterials. The computer program called QUEWZ 

ut and work intensity. 

support. As part of this 

, a spreadsheet based tool called QuickZone

queue delays and lengths given work zone capacity, traffic demand, and work phasing (Mitretek, 

present a simulation model f r w

(queue and user cost evaluation at work zone) evaluates queue lengths and additional user costs 

for work zones on freeways (Memmott and Dudek, 1984; Krammes et al., 1987). This model 

uses the conservation of flow principle to calculate the queue lengths and user costs for different 

lane closure configurations and work schedules. The capacity of the work zone is calculated 

from empirical speed-flow-density relationships and is independent of the work zone 

characteristics such as work zone layo

 Recently, an initiative at the Federal Highway Administration (FHWA) was launched to 

develop strategic tools for work zone traffic analysis and decision 

program  has been developed to quantify work zone 

2000). The QuickZone software takes as input hourly values of traffic demand and work zone 
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c city. Queue lengths and delaapa ys are computed by the deterministic input-output conservation 

RAFFIC ANALYSIS 

A deterministic macroscopic queuing model is used to calculate queue lengths and delays 

odel is based on the principle 

tically accurate estimates for queue lengths and 

principle of traffic flow. The software does not take into account work zone layout, lane widths, 

driver behavior, work intensity, and proximity of ramps in the computation of work zone queue 

delays and lengths. 

 

DETERMINISTIC QUEUING MODEL FOR WORK ZONE T

 

produced by bottlenecks on highways such as work zones. This m

of conservation of flow which states that under homogeneous roadway conditions the number of 

vehicles entering a segment in a given time period must be equal to the number of vehicles 

exiting the segment in the same time period. If the road segment is inhomogeneous with a 

bottleneck such as a capacity reducing work zone existing on a portion of the segment, then the 

number of vehicles exiting may be fewer than the number of vehicles entering the segment. The 

difference in such a situation represents the queue formed in the upstream direction.   

 This model is an adaptation of the theory of incompressible fluid flow to vehicular traffic 

streams. It only requires as input traffic demand (or flow rate), highway capacity, and their 

variation over time. If conservation of flow is evaluated over a reasonable time period (say 

greater than 15 minutes) the model produces prac

delay times that can be used for planning, assuming that the demand and capacity values 

represent the actual conditions on the highway accurately. In the following paragraphs, the 

model is formulated for a single link or segment of freeway containing a capacity reducing work 

zone. 
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 Figure 1 shows the layout of a freeway segment with a construction work zone. The work 

zone acts like a metered on-ramp that allows only a certain number of vehicles to pass through in 

 given amount of time. Major freeway repair, rehabilitation, and reconstruction projects are 

al day (o

a

multi-day repetitive operations where work zone layout and phasing is often identical from day 

to day. Therefore, it is sufficient to analyze a typic r at most a few typical days) of work 

for their traffic impact. If a 1-hour evaluation time period ( t∆  = 1 hour) is considered twenty 

four values of traffic demand or anticipated hourly traffic flow approaching the work zone (ft) 

and highway capacity (c) are needed as input to cover a period of one day. Let these values be 

denoted by ft (t=0,..,23) and c(t) (t=0,..,23), respectively, where the index t indicates the time 

period. Then, for time periods t = 1, 2, 3,…, 23, using the conservation principle the number of 

vehicles in the queue in time period t is given by 

[ ]0),1()()(max)( −+−= tQtctftQ t        t = 1, 2, 3,…, 23 (1) 

The term )1( −tQ  on the right hand side of recursive Eq. (1) represents the number of vehicles in 

the queue for the previous time period.  When t = 1 the queued vehicles at the previous time 

period )1( −tQ  can be taken equal to zero if the beginning of evaluation period is chosen at a 

time when demand is less than the capacity. The highway capacity c(t) is equal to the work zone 

capacity, c

 

n the 

bsence of the work zone (Figure 1). 

ength of 

W, when the work zone exists and equal to c0, the capacity of the freeway i

a

 If k is the jam density (the number of queued vehicles that occupy a given l

highway), then the average length of queue at time period t is given by 

 
k
tQtQ )()( =     t = 0, 1, 2,…, 23 (2) L

The expected daily queue delay (in vehicle-hours) experienced by motorists is given by 
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ttQtQQ
t

∆
−+

= ∑ D
= 2

ur expressed in dollars per vehicle hour is known. The accuracy of this analysis 

 of the traffic demand, that is 

daily traffic (AADT), which is the daily traffic demand averaged over all days of the year, is 

unsuitable for this purpose. Shorter time estimates of traffic demand can be obtained from the 

AADT when daily, weekly and seasonal demand factors (

23

1

)1()(    (3) 

where t∆  = 1 hour is the evaluation time period. Equations (1)-(3) define the primary parameters 

needed by the work zone engineer to assess the impact of a work zone on traffic in creating a 

TMP. Using these values the user delay cost can be estimated provided that the average cost per 

vehicle ho

depends on the accuracy of the demand and capacity values used.  

 

ESTIMATION OF TRAFFIC DEMAND AT WORK ZONES 

 To accurately predict the temporal development and extent of queues and delays created in 

work zones it is necessary to have a reasonably accurate estimate

the anticipated hourly traffic flow of the freeway approaching the work zone. The annual average 

) are known for the freeway. Many Sα

traffic agencies maintain values for daily, weekly, and seasonal demand factors. For example, 

ODOT specifies values for Sα  in the range of 0.76 and 1.72 

(http://www.dot.state.oh.us/techservsite/). Many traffic agencies also maintain hourly vehicle 

counts on major highways, in which case Sα  = 1.  

 These traffic demand values reflect the behavior and usage pattern of the public under 

normal and unrestricted freeway conditions. The usage patterns usually change after the 

establishment of the work zone impacting analyses of work zone traffic congestion.Once a work 

zone is set up on a freeway, traffic demand for that segment of the freeway reduces in reaction to 
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increased travel times and availability of alternate routes. Therefore, the traffic flow approaching 

a work zone can be expressed as 

 )()()( tfttf tSDt ′= αα                                                                   (4) 

where tf ′  is the average traffic demand on the highway prior to the establishment of the work 

zone,  is the seasonal demand factor, and )(t  ( 10 ≤<Dα Dα ) is the demand reduction factor Sα

(or diversion factor). The value of the latter factor depends on the number of motorists: (1) 

choosing alternate routes, (2) changing their schedules to avoid the work zone, (3) canceling 

their trips because of the work zone, and (4) changing transportation mode, for example, opting 

to use public transportation. Diversion of traffic through alternate routes may be signed or 

advised by an advanced traveler information system (ATIS). Or, it may occur naturally where 

mo amiliar with the highway corridor select alternate paths to their destinations. The 

ma

torists f

gnitude of )(tDα  is determined from traffic demand studies carried out for similar freeway 

work zone scenarios. Alternatively, or in addition to traffic demand studies, the demand 

reduction factor can be determined from a traffic network analysis of the freeway corridor that 

includes the work zone and alternate origin-destination routes. This factor can change from one 

time period to another as the congestion caused by the work zone changes. This is because long 

queues and delays dissuade motorists from continuing on the freeway and force them to seek 

alternate routes. 

 

NEURAL NETWORK MODEL FOR ESTIMATING WORK ZONE CAPACITY 

Factors Affecting the Work Zone Capacity and Included in the Model 

 Accurate estimates of work zone capacity are critical for reliable and accurate computation 

of queue delays and lengths at work zones. Work zone capacities and, in general, freeway 
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capacities depend on the prevailing roadway, traffic, and control conditions. As these conditions 

within a work zone are significantly different from those in an unrestricted segment of the 

freeway, work zone capacities have to be estimated separately for each work zone scenario by 

taking into consideration the unique characteristics of the work zone TMP that impact capacity. 

For example, work zone layouts may contain uncommon geometries such as lane drop-offs and 

sharp horizontal alignment changes that cannot support high speeds thus reducing the freeway 

capacity.  

 The primary factors impacting the work zone capacity and considered in this research are: 

number of lanes (x1), number of open lanes (x2), work zone layout (x3), work zone length (x4), 

lane width (x5), percentage of trucks (x6), grade (x7), work zone speed (x8), work intensity (x9), 

darkness factor (x10), and proximity of ramps or interchange effects (x11). Theoretically, work 

zone capacity can be expressed as a function of these parameters: 

, 

 ),,,,,,,,,,( 111098765432 xxxxxxxxxxxfc iW =  (5) 

The number of open lanes can vary from 1 to the maximum number of existing lanes in each 

direction. Some work zone layouts do not involve a reduction in the number of open lanes after 

the creation of the work zone (Figure 2b). The work zone layout parameter identifies one of the 

three common work zone layouts used in practice known as lane merging, lane shifting, and 

crossover (shifting a diverted lane onto the right-of-way of the opposing traffic) (Figure 2). For 

computational modeling, these three layouts are identified by numbers 0.1, 0.5, and 0.9

respectively. The lane width parameter is the minimum width of a traveled lane within the work 

zone. The standard highway lane width in the U.S. is 12 ft. A width less than 12 ft will 

negatively impact the lane’s capacity. The percentage of trucks parameter represents the 

percentage of trucks, buses, and heavy vehicles in the traffic stream. A greater percentage of 
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trucks tends to reduce mean speeds through the work zone and consequently reduce freeway 

capacity. Freeway grade impacts the mean speed of traffic through the work zone, especially 

when the percentage of trucks is large. 

 As part of a TMP a lower speed limit may be imposed and enforced through the work zone to 

enhance safety. A lower work zone speed, however, decreases the capacity of the work zone. 

The work intensity parameter describes the intensity of work activity carried out in the work 

zone. This is a readily non-quantifiable parameter. In this research, the work intensity is broadly 

categorized into low, medium, or high depending on the size and number of the equipment and 

labor at the site, the noise and dust created, and the proximity of work to the traveled lanes. For 

example, pavement marking operation is a low intensity work, pavement resurfacing is a 

medium intensity work, and pavement rehabilitation/lane addition is a high intensity work. For 

computational modeling, these three work intensity categories are identified by 0.1, 0.5, and 0.9, 

e work zone taper, or 500 ft downstream of the work zone. 

number of vehicles 

o

the work zone capacity problem is too complicated to be amenable to 

respectively. Low-visibility and darkness reduces capacity as motorists become more cautious 

under such conditions. The darkness factor can vary from greater than 0 to 1 where 1 indicates 

adequate illumination that does not reduce capacity.  

 The interchange effects (proximity of ramps) parameter indicates the presence of an on- or 

off-ramp within 1500 ft upstream of th

The proximity of ramps produces turbulence in traffic flow reducing the 

m ving through the work zone. This parameter is modeled as a binary two-valued parameter 

with values of 0 (no ramps) or 1 (ramps exist in proximity to the work zone). 

The Case for Neural networks 

 There is no mathematical function for the work zone capacity function represented by Eq. 

(5). In other words, 
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classical mathematical solutions. The widely used Highway Capacity Manual (HCM) (TRB, 

2000) provides scant information on the work zone capacity based on empirical data 

measurements. It provides a base capacity value for ideal unrestricted highway segments. This 

value can be modified to take into account certain deviations from the ideal conditions by 

applying reduction factors. Conditions within work zones are far from ideal and the values and 

reduction factors given for the ideal highway segments are generally not applicable to work zone 

analysis. The HCM provides a base capacity of 1600 vehicles per hour per lane (vphpl) for short-

term work zones of any layout. Guidelines are also given on how to modify the base value to 

take into consideration work intensity, percentage trucks, proximity of ramps, and lane widths. 

Other factors considered in this research and described in connec ion with Eq. (5) such as work 

zone layout are not considered. Furthermore, it is import

t

ant to consider the interaction of various 

sed to solve complicated pattern recognition and 

estimation problems not amenable to conventional mathematical modeling (Adeli and Hung, 

). Most civil engineering applications of the 

neural networks are based on the simple backpropagation (BP) algorithm (Adeli, 2001). But, the 

BP algorithm has shortcomings including very slow convergence rate and problem-dependent 

trial-and-error selection of the learning and momentum ratios. In the next section, a radial-basis 

nction neural network (R F N) is eloped for estimating the freeway work zone capacity. 

 The RBFNN has a simple topology consisting of an input layer, a hidden layer of nodes with 

radial basis transfer functions, and an output layer of nodes with linear transfer functions. Using 

the training data, the RBFNN creates clusters for similar patterns. Each cluster has a center 

factors on the work zone capacity. For example, darkness has a significant impact when the work 

is of high intensity. 

 Artificial neural networks have been u

1995; Adeli and Park, 1998; Adeli and Karim 2001

fu B N  dev
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(represented by a hidden layer node). Similarity of any new pattern to the training patterns is 

measured by its proximity to the centers of the clusters. As such, the RBFNN is a regularization 

1989; Poggio and Girosi, 1990). It is most 

suitable for estimation problems where limited data is available and overfitting needs to be 

lim rns may not be sufficiently 

s is maintained by the 

(1998). In contrast, the multilayer 

edforward neural network trained by the BP algorithm has a large number of global transfer 

 are limited and 

or generalization network (Moody and Darken, 

avoided. The danger of overfitting is reduced by the local nature of the transfer functions that 

allow only a fraction of the nodes to participate in the mapping of a given pattern. When data are 

ited the effect of noise becomes significant and some patte

represented in the training. Generalization in the vicinity of cluster center

graded nature of the transfer functions. The generalization properties of RBFNNs are discussed 

in detail by Poggio and Girosi (1990) and Adeli and Wu 

fe

functions making it susceptible to the overfitting problem when training data

noisy.  

 Another advantage of the RBFNN over the multilayer feedforward neural network and BP 

algorithm is its rapid training. Information in a RBFNN is locally distributed. As such, only a 

few weights have to be modified in each iteration during the training process. Because of these 

reasons, the RBFNN is found to be suitable for learning the work zone capacity function for 

which only limited data is available.  

Radial-Basis Function Neural Network for Estimating Work Zone Capacity 

 The architecture of the proposed RBFNN for estimating the work zone capacity is shown in 

Figure 3 schematically. It has an input layer with eleven nodes representing the eleven 

parameters included in the work zone capacity function defined by Eq. (5), a hidden layer with 
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N nodes with radial-basis transfer functions, and an output layer with one node representing 

work zone capacity.  

 Some of the variables in Eq. (5), such as the work intensity, are in linguistic terms. Such 

linguistic variables are pre-processed first by converting them to numerical values normalized 

between zero and one.  The numerical parameters are normalized between 0 and 1 as well. The 

normalization is done so that no single factor dominates the training process

h 

. The number of 

odes in the hidden layer, Nh, is equal to the number of cluster centers used to characterize the 

 number of training instances. This choice is 

n

training data. It is chosen as a fraction of the total

based on numerical experimentation for the problem at hand to determine which number 

adequately covers the input space and produces the best mapping. A number within the range of 

10 to 30% of the number of training instances is found to produce satisfactory results (Adeli and 

Karim, 2000).  The cluster centers are represented by vectors hj Nj ≤≤1( µ ) obtained using the 

fuzzy c-means algorithm described in Adeli, and Karim (2000). 

 The weight of the link connecting the input node i to the hidden node j is set equal to ijµ  

corresponding to the ith component of the vector . The output of a hidden node j is 

  

jµ

determined by the following Gaussian transfer function: 

⎟⎟
⎟

⎠
⎜
⎜

⎝

−
−= 2exp j

jφ
µx

   (6) 

where x is the vector of input variables and the factor j

⎞

⎜

⎛ 2

2 jσ

σ  controls the spread or range of 

influence of the Gaussian function centered at jµ . In this work jσ  is calculated as (Adeli and 

Karim, 2000)  
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∑ −= 
=

ijj

N

ihN 13
1 µµσ      (7) hNj ≤≤1

where N is the total number of training instances. Equation (7) approximates the spread 

parameter jσ  as one third of the mean distance between cluster centers. The connection from the 

hidden node j to the output node is assigned the weight jλ  to be described shortly. The output y 

of the network is then given by 

∑=
=

y λφ                                              (8)   
hN

j
jj

1

The weights jλ  are calculated by minimizing the error between the network computed output y 

and the desired output yd based on training examples. In other words, to train the network for 

jλ ’s we solve the following unconstrained optimization problem: 

 Minimize ∑ −=
=

ii yyE )(λ                                                         (9) 

orithm is used to solve this optimization problem. The 

N

i
d

1

The gradient descent optimization alg

output y of the system represents the work zone capacity, cW. 

 

COMPUTATION OF WORK ZONE QUEUE DELAYS AND LENGTHS 

 Figure 4 shows the inter-relation of work zone capacity, traffic demand, and delay estimation 

models schematically. The work zone capacity estimation model takes as input the eleven 

parameters affecting work zone capacity. These values are passed through the trained RBFNN 

model to determine the work zone capacity for the given work zone scenario. The traffic demand 

estimation model takes as input the hourly traffic demand prior to the establishment of the work 

zone, the queue delay and length, if any, and the driver behavior characteristics. The latter two 
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factors are used to estimate the demand reduction factor. The estimates of queue delay and 

length are obtained from the work zone queue delay and length estimation model. This model 

takes as input the outputs from the traffic demand and work zone capacity estimation models. 

The work zone capacity and the modified traffic demand are used to estimate the work zone 

queue delay and length using Eqs. (3) and (2), respectively.  

 The model is evaluated for each time period t∆ (for example, every hour). If the work zone 

scenario does not change during the construction then the work zone capacity remains constant 

during the analysis. Otherwise, different work zone capacity values are determined for different 

m

 AND TESTING THE NETWORK 

The

 

ti es of the construction reflecting the changing work zone scenario. Similarly, if the traffic 

flow approaching the work zone is known and the demand reduction factor is one, the traffic 

demand model is evaluated once. Otherwise, it is evaluated at every time step.  

 

TRAINING

  RBFNN model for work zone capacity estimation is trained using forty examples of 

work zone capacity (Table 1). These examples are created from the work zone capacity table 

provided by ODOT, the guidelines presented in the Highway Capacity Manual (TRB, 2000) for 

different highway and work zone capacities, and the experience and judgment of the authors. 

The ODOT lookup tables provide work zone capacity values for lane closure configurations of 3 

to 2, 3 to 1, and 2 to 1, lane widths of 10, 11, and 12 ft, truck percentages from 0 to 25, work

zone lengths from 0 to greater than 8 miles, and roadwy upgrades from 0 to 6 percent. Guidelines 

from the HCM, in the form of recommended ranges of adjustments, are used in conjunction with 

the judgement of the authors to adjust the capacity values for work zone layout, work zone 

speed, work intensity, and proximity of ramps. The training examples represent as many possible 
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combinations of work zone scenarios to ensure that the boundaries of the input space are 

adequately covered for effective generalization by the RBFNN model. Training of the network 

took less than 10 seconds on a Pentium 4 PC with a root mean square error of 165. The purpose 

of the training was to achieve a generalized mapping rather than a perfect fit to the training data. 

A perfect fit would be of little practical value considering the noisy nature of the training data 

and the complexity of the problem that depend on many factors in addition to the eight primary 

factors modeled in this research. 

 The network is tested using 27 work zone capacity values observed in the field and reported 

in the literature (denoted by scenarios 1 to 27 in Figure 5). Nine samples are taken from Dixon et 

s 

om a

Figure 5.The error is mostly in the range of 0.4% to 11% while for 10 samples the errors range 

al. (1995) (scenarios 1 to 9 in Figure 5). These samples are for two-lane (in each direction) rural 

freeways in North Carolina with one lane closed and one lane open to traffic. The North Carolina 

data contain eight of the eleven parameters needed for the work zone capacity estimation model. 

Values of zero are used for the unavailable parameters. Twelve samples are taken from Jiang 

(1999) for work zones on four-lane freeways in Indiana (scenarios 10 to 21 in Figure 5). These 

samples are also for work zones with one open and one closed lane. They contain values for only 

seven of the eleven parameters. Six samples are taken from Kim et al. (2001) for work zones on 

freeways in Maryland (scenarios 22 to 27) in Figure 5). These samples are for work zones with 

two open lanes. The Maryland data also contain seven of the eleven parameters used in the new 

work zone capacity estimation model. 

 The RBFNN is used to estimate the work zone capacity for these real work zone scenario

fr  variety of sites with different traffic and geometric characteristics. The work zone 

capacity values estimated by the RBFNN model are compared with the observed values in 
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from 20 to 71% (samples 4 to 9, 12 to 14, and 25). One reason for the large errors in the 

estimated work zone capacity values is the large percentage of trucks in these samples’ scenarios 

(19 to 27% for samples 4 to 9, 22 to 32% for samples 12 to 14, and 28% for sample 25). The 

percentage of trucks parameter significantly impacts work zone capacity by reducing mean 

speeds through work zones. The impact is compounded when the work zone is on an upgrade, a 

parameter not reported in the sample data used to train the neural network model. Furthermore, 

the maximum value for the percentage of trucks in the training data set is 25, thus forcing the 

RBFNN model to extrapolate for scenarios with higher values. It should also be noted that the 

data used for testing the RBFNN model suffered from several problems including missing values 

for several key parameters affecting work zone capacity and differing and/or unknown 

procedures for data collection and analysis. Nevertheless, considering the very limited amount of 

training data available to the authors, the model yields reasonably accurate results for most 

scenarios.  

 The RBFNN model presented is general and is expected to perform much better when tested 

with a larger and more reliable data set. This observation is based on the fact that the training 

root mean square error is 165 vehicles per hour, which is acceptable for most practical purposes.  

EXAMPLES 

Example 1 

 This example demonstrates the use of the new work zone capacity and delay estimation 

model as an intelligent decision support system for the creation of a work zone TMP. It also 

highlights the significance of accurately estimating the work zone capacity for reliable 

estimation of queue delay and length. A work zone needs to be established on a six-lane freeway 
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(three lanes in each direction) for lane resurfacing. The work will start at 6 AM each day and 

terminate 8 hours later. The capacity of the unrestricted freeway (in one direction) is 5400 vph.  

 Six work zone scenarios are evaluated for this work, described in Table 2. Each scenario 

represents a different work zone geometry and management option. It is desired that at least two 

lanes be kept open through the work zone. The impact of work zone layout, lane width, length, 

speed, and proximity of ramps are investigated. A work zone scenario with one open lane 

(scenario 6) is also considered for situations where it becomes unavoidable. The RBFNN model 

for estimating work zone capacity is used to determine capacity values for these scenarios. The 

sults, given in Table 2, clearly show the significant dependence of work zone capacity on 

s length, lane width and proximity of ramps. By increasing the work zone 

arios varies from 

15 (scenario 3) to 10193 (scenario 6). Assuming the jam density (k) is 200 vehicles per mile per 

lane and queue is evenly distribution among the 3 lanes, the maximum queue lengths produced 

by these scenarios varies from 0.19 to 17 miles. The maximum determined for scenario 6 may 

not be attained in practice because motorists would react to the delay and change their behavior. 

re

parameters such a

length from 1 to 5 miles, the work zone capacity is reduced from 2785 to 2705 vph (scenarios 1 

and 2). The width of lanes has a more significant effect, as seen from the estimated capacity 

values for scenarios 3, 4, and 5. The proximity of a ramp reduces capacity by only 22 vph 

(scenarios 4 and 5). Comparing scenarios 1 and 2 with scenarios 3, 4 and 5 it is seen that the lane 

merging layout produces slightly better capacity values as compared to the crossover layout. 

 Table 3 gives the number of vehicles in queue at each hour (or queue delay in vehicle-

hours) for the six work zone scenarios. The hourly traffic flow approaching the work zone 

(traffic demand) is given in column two. In this example, it is assumed that the traffic demand 

reduction factor is 1. The maximum vehicles in queue produced by the six scen

1
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In any case, scenario 6 should not be adopted except for emergency situations. Work zone 

ong at all times (ODOT, 2000). 

one capacity caused by modifying the 

e 

 for unrestricted freeways. However, when a work zone is established the traffic 

. Work zone scenario 1 is analyzed. The traffic demand on the freeway and the demand 

sults of the capacity and delay estimation 

considered in the analysis. This example 

traffic demand on 

Example 3 

scenario 3 provides the best solution for this example. This scenario satisfies ODOT’s 

requirement that queue lengths should be less than 0.75 miles l

 The significance of accurate work zone capacity estimation is evident from Table 3. 

Comparing scenarios 3 and 4, a slight increase in work z

work zone characteristic has drastically reduced the queue delay. Scenario 4 causes a daily queue 

delay of 7097 vehicle-hours as compared to only 250 vehicle-hours for scenario 3.  

Example 2 

 This example illustrates the use of the demand reduction factor and its impact on th

computation of work zone queue delay and length. Hourly traffic demand is often measured on 

or estimated

flow approaching the work zone often reduces as motorists change behavior in reaction to delays 

or delay information. Data for the six-lane freeway presented in Example 1 is used in this 

example

reduction factors are given in Table 4. Up to 6 percent of motorists change their behavior and 

reduce the flow approaching the work zone. The re

model are given in Table 4. It is seen that the number of vehicles in queue decreases sharply as 

compared to the case when no reduction in demand is 

highlights the importance of warning motorists in advance and providing them with alternate 

routes to the reduction of queue delays and lengths. It also shows that using 

unrestricted freeways for the computation of work zone queue delays and lengths will 

overestimate these values. 
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 This example illustrates the impact of work scheduling on work zone delays and queue 

lengths. A work zone on a four-lane (two lanes in each direction) freeway is analyzed. The work 

 zone is 45 mph. 

NN model for work zone capacity estimation, the capacity of 

ed. In phasing 1, work starts at 12 noon and ends 

 5 and shown in Figure 6. It is seen that by scheduling work when traffic demand is low 

ber of lanes, number 

its capacity. The model also considers reduction in traffic flow approaching the work 

ueue delays 

zone has a lane merging layout with one lane open having a width of 11 ft. Ten percent of the 

traffic stream is composed of heavy vehicles. The speed limit through the work

The work is of medium intensity with a duration of 6 hours, and no ramps exist in the proximity 

of the work zone. Using the RBF

this work zone scenario is found to be 1581 vph. The unrestricted freeway capacity is 3800 vph. 

The hourly traffic flow approaching the work zone (traffic demand) is given in Table 5. Three 

work zone starting times (or phasing) are analyz

6 hours later. In phasing 2, work starts at 4 AM, while in phasing 3 work starts at 12 midnight. 

The results computed using the work zone capacity and delay estimation model are given in 

Table

one can reduce or even eliminate work zone queue delays and lengths..  

 

CONCLUSION 

 In this article, a new model for work zone capacity and delay estimation is presented. The 

model considers 11 parameters in the estimation of work zone capacity: num

of open lanes, layout, length, lane width, percentage trucks, grade, speed, work intensity, 

darkness factor, and proximity of ramps. A RBFNN model is developed to map a work zone 

scenario to 

zone in the computation of queue delays and lengths. Accurate estimation of work zone capacity 

and demand are essential for the accurate and reliable determination of work zone q
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and lengths. Three examples are presented to illustrate the use of the new model and to highlight 

the significance of capacity and demand values in the analysis of work zones.  
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odel for estimating work zone capacity 
No. of 
lanes 

No. of 
open 
lanes 

Layout Length Lane 
width 

Percentage 
trucks 

Grade Work 
zone 
speed  

Work 
intensity

D ess Inter- 

effects 

Work 
zone 

capacity

arkn
factor change 

   (miles) (ft)  (%) (mph)    (vph) 
2 1 M 1 10 5 0 45 Low  No 1 1450 
3 1 M 2 11 5 1 45 Low  No 1430 1
2 2 S 8 11 10 0 55 Low 9000.95 No 2  
2 2 S 1 11 3 1 55 Medium 2850 1 Yes 
3 1 C 5 11 8 5 50 High  No 1350 1
3 2 M 2 11 15 0 40 Low 750.9 Yes 2 0 
3 3 S 10 12 5 0 40 Medium 1 No 4650 
2 1 M 1 12 25 2 45 Low  Yes 1300 1
2 1 C 2 12 15 2 35 Medium  Yes 12501  
3 2 C 5 12 10 0 45 High 9200.9 No 2  
4 3 M 1 10 5 5 35 High 1 Yes 4000 
3 2 M 15 10 7 0 40 High 1 No 2750 
2 2 S 20 11 3 1 50 Medium 0.95 No 2950 
2 2 S 3 12 10 0 55 Low 1 Yes 3000 
2 1 M 5 11.5 0 5 40 Medium 1 Yes 1450 
2 1 C 2 10 10 0 40 Low 0. 495 No 1 00 
3 2 M 4 11.5 15 1 45 Medium 1 No 2980 
3 2 M 2 12 25 1 45 High 1 No 2650 
2 1 C 2 10 5 0 35 Medium 0.9 Yes 1250 

 

 

Table 1 Training data for the RBFNN m

2 1 M 2 10.5 8 0 45 Medium 1 No 1375 
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No. of 
lanes 

No. of 
open 
lanes 

Layout
width trucks zone intensity factor change 

Work 
zone 
pa

 Length Lane Percentage Grade Work 

speed  

Work Darkness Inter- 

effects ca city
   (miles  (mph)    (vph) ) (ft)  (%)
2 1 M 1 1 No 12 3 2 55 High 1550 
3 2 C 5 12 10 1 45 Low 1 Yes 2950 
4 3 M 5 11 15 1 45 L 1 Yes 4100 ow 
3 1 M 1 1310 10.5 20 0 35 Medium 1 No 
2 2 S 5 10 10 0 40 Low 0.9 Yes 2700 
3 2 M 4 10 10 0 50 Medium 1 No 2750 
2 1 M 1 11 5 2 50 High 0.85 No 1300 
2 2 S 2 11 5 0 1 No 29   45 High 80
2 1 C 10 12 20 0 55 Medium 1 Yes 1400 
2 2 S 5 11.5 5 0 45 Medium 0.95 Yes 3000 
2 1 M 2 11.5 10 1 40 Low 1 No 1450 
2 1 M 1 10 5 0 35 Medium 1 Yes 1300 
2 2 S 2 5 50 Low 1 No 2950 11 5 
2 1 C 10.5 3 2 45 Low 0.9 Yes 1420 1 
3 1 M 1 11 20 0 45 Medium 1 No 1380 
3 2 M 1 12 25 1 Medium 1 No 45 2750 
2 2 C 5 11 5 1 35 Low 0.95 Yes 4400 
3 2 C 3 11 0 High 1 Yes 5 35 2850 
2 1 M 1 10 5 3 40 Low 1 No 1350 
3 1 M 1 11.5 7 0 1 Yes 55 Low 1450 

 

 

 
Table 1 – continued 

M = Lane merging; S = Lane shifting; C = lane rossover 
 
 



 

 
Table 2 Description of work zone scenarios and their capacities estimated by the RBFNN model 

nario of 
open 
lanes 

dth 
(ft) 

e
(m

(m h) 

ter-
g

effects 
(vph) 

 
Sce- No. Layout Lane 

wi
L ngth 

iles)
Work 
zone 
speed 

In
chan e 

Work 
zone 

capacity 
p

1 2 M 11 1  No 2785 45
2 2 M 11 5  No 2705 45
3 2 C 12 5  No 2952 55
4 2 C 10.5 10  No 2625 45
5 2 C 11 10  Yes 2603 45
6 1 C 12 5  No 1478 50

M = Lane merging; C = Lane crossover 
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Table 3 Queue delay results for Example 1 
 
Hour 

 day of
Tra
dem

 in queue ffic 
and 

No. of vehicles

 (vp ork zone scenarios (defined in Table 2) h) W
  1 2 3 4 5 6 
0 682 0 0 0 0 0 0 
1 431 0 0 0 0 0 0 
2 304 0 0 0 0 0 0 
3 323 0 0 0 0 0 0 
4 312 0 0 0 0 0 0 
5 580 0 0 0 0 0 0 
6 1934 0 0 0 0 0 456 
7 2986 201 281 34 361 383 1964 
8 2666 82 242 0 402 446 3152 
9 3067 364 604 115 844 910 4741 
10 2681 260 580 0 900 988 5944 
11 3035 510 910 83 1310 1420 7501 
12 2887 612 1092 18 1572 1704 8910 
13 2761 588 1148 0 1708 1862 10193 
14 3133 0 0 0 0 0 7926 
15 3503 0 0 0 0 0 6029 
16 3586 0 0 0 0 0 4215 
17 4027 0 0 0 0 0 2842 
18 2609 0 0 0 0 0 51 
19 1895 0 0 0 0 0 0 
20 1591 0 0 0 0 0 0 
21 1492 0 0 0 0 0 0 
22 1423 0 0 0 0 0 0 
23 833 0 0 0 0 0 0 
        

Max. 
queue 
length 
(miles) 

 1.0 1.9 0.19 2.8 3.1 17.0 

 

 119



 

 
Table 4 Queue delay results for Exam
 
Hour of day Demand reduction 

factor 
No. of vehicles in 

queue (with demand 
reduction) 

No. vehicles in 
queue (from Table 

3, Scenario 1) 

ple 2 

0 1 0 0 
1 1 0 0 
2 1 0 0 
3 1 0 0 
4 1 0 0 
5 0.99 0 0 
6 0.98 0 0 
7 0.95 52 201 
8 0.95 0 82 
9 0.97 190 364 
10 0.97 6 260 
11 0.95 104 510 
12 0.94 33 612 
13 0.96 0 588 
14 1 0 0 
15 1 0 0 
16 1 0 0 
17 1 0 0 
18 1 0 0 
19 1 0 0 
20 1 0 0 
21 1 0 0 
22 1 0 0 
23 1 0 0 
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Table 5 Queue delay results for Example 3 
 
Hour of 

day 
Traffic 
demand  

No. of vehicles in queue 

 (vph) Phasing 1 Phasing 2 Phasing 3 
0 180 0 0 0 
1 50 0 0 0 
2 117 0 0 0 
3 420 0 0 0 
4 833 0 0 0 
5 1145 0 0 0 
6 2161 0 580 0 
7 821 0 0 0 
8 1020 0 0 0 
9 930 0 0 0 
10 910 0 0 0 
11 1320 0 0 0 
12 1620 39 0 0 
13 1728 186 0 0 
14 2154 759 0 0 
15 2420 1509 0 0 
16 2021 2038 0 0 
17 1460 1917 0 0 
18 850 0 0 0 
19 700 0 0 0 
20 400 0 0 0 
21 280 0 0 0 
22 240 0 0 0 
23 210 0 0 0 
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Figure 1 Schematic description of traffic demand and capacity through work zones 
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(a) (b) (c)  
 

Figure 2 Common work zone layouts (a) Lane merging, (b) Lane shifting, and (c) Crossover 

 123



 

1,1�

1�
hN�

1�
hN�

Preprocessing

x1 x2 x3 x4 x5 x6 x7 x8

Work zone capacity parameters

y

Work zone capacity, cW

hN,11�

x9 x10 x11

 
 

Figure 3 RBFNN model for work zone capacity estimation 
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Figure 4 Inter-relation of work zone capacity and delay estimation models 
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Figure 5 Comparison of observed and RBFNN estimated capacity values 
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Figure 6 Number of vehicles in queue for different work phasing  (Example 3) 

 127



 

 

 

 

 

Part IV 

 

 

 

 

Neuro-Fuzzy Logic Model for Freeway Work Zone Capacity Estimation 
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NEURO-FUZZY LOGIC MODEL FOR FREEWAY WORK ZONE CAPACITY 

 

Hojjat Adeli, Fellow, ASCE

ESTIMATION 

8

ABSTRACT: The work zone capacity cannot be described by any mathematical function 

because it is a complicated function of a large number of interacting variables. In this article, a 

novel

ction of various adjustment factors or values by the work zone engineers based 

on pr

7 and Xiaomo Jiang

 adaptive neuro-fuzzy logic model is presented for estimation of the freeway work zone 

capacity. Seventeen different factors impacting the work zone capacity are included in the 

model. A neural network is employed to estimate the parameters associated with the bell-shaped 

Gaussian membership functions used in the fuzzy inference mechanism. An optimum 

generalization strategy is used in order to avoid over-generalization and achieve accurate results. 

Comparisons with two empirical equations demonstrate that the new model in general provides a 

more accurate estimate of the work zone capacity, especially when the data for factors impacting 

the work zone capacity are only partially available. Further, it provides two additional 

advantages over the existing empirical equations. First, it incorporates a large number of factors 

impacting the work zone capacity. Second, unlike the empirical equations, the new model does 

not require sele

ior experience.  
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INTRODUCTION  

Work zone capacity has a significant impact on the congestion and traffic queue delays 

w

 The earlier field measurements and investigations can be traced to the work done at Texas 

Transportation Institute (TTI) from the late 1970s to the mid-1980s. TTI’s work provided the 

basis

The work zone capacity cannot be described by any mathematical function because it is a 

complicated function of a large number of interacting variables. That explains the dearth of 

scientific work on mathematical modeling of the freeway work zone capacity. In this article, a 

novel adaptive neuro-fuzzy logic model is presented for estimating the freeway work zone 

hich result in increased driver frustration, increased traffic accident, increased road user 

delay cost, and increased fuel consumption and vehicle emissions. Highway agencies often 

use the empirical and highly approximate method described in the Highway Capacity 

Manual (HCM) (HCM 2000) to determine the freeway work zone capacity with lane 

closures. The HCM provides a base capacity of 1600 vehicles per hour per lane (vphpl) for 

short-term ideal unrestricted highway work zones. Guidelines are given on how to modify 

the base value to take into account percentage of trucks, work intensity, proximity of ramps, 

and lane widths. However, a large number of additional factors affect the freeway work zone 

capacity estimation which are neglected in the HCM guidelines.  

 for the empirical freeway work zone capacity estimation guidelines included in the 

previous Highway Capacity Manual (HCM, 1985). Recently, a few studies have been conducted 

for estimation of the work zone capacity based on measured field data (Krammes and Lopez, 

1994; Dixon and Hummer, 1995; Dixon et al. 1997; Jiang 1999; Al-Kaisy et al. 2000; Al-Kaisy 

and Hall, 2001; Kim et al. 2001).  

 130



 

capacity. Seventeen different factors impacting the work zone capacity are included in the 

model. A neural network is employed to estimate the parameters associated with the bell-shaped 

Gaus

l model is presented for estimating the work zone capacity 

under

), 16) pavement conditions 

(dry, 

ters: proportion of heavy 

vehicles and the passenger-car equivalent for heavy vehicles. Kim et al (2001) conduct a 

regression analysis of the interaction between the work zone grade and percentage of heavy 

sian membership functions used in the fuzzy inference mechanism.  

FACTORS IMPACTING THE WORK ZONE CAPACITY AND INCLUDED IN THE 

MODEL 

In this article, a computationa

 a variety of possible work zone scenarios. A large number of factors impacting the work 

zone capacity are included as inputs to the model. They are 1) percentage of truck  (x1), 2) 

pavement grade (x2), 3) number of lanes (x3), 4) number of lane closures (x4), 5) lane width (x5), 

6) work zone layout (lane merging, lane shifting, and crossover) (x6), 7) work intensity (work 

zone type) (x7), 8) length of closure (x8), 9) work zone speed (x9), 10) interchange effects 

(proximity of ramps) (x10), 11) work zone location (urban or rural) (x11), 12) work zone duration 

(long-term or short-term) (x12), 13) work time (daytime or night) (x13), 14) work day (weekday 

or weekend) (x14), 15) weather condition (sunny, rainy or snowy) (x15

wet, or icy) (x16), and 17) driver composition (commuters or non-commuters such as 

tourists)  (x17). 

Since heavy vehicles such as truck occupy more space on the roadway and move slower 

than passenger cars, a higher percentage of trucks tends to reduce the work zone capacity. 

Kramme and Lopez (1994) study the work zone capacity and conclude that a high percentage of 

heavy trucks has a significant impact on the work zone capacity. The HCM (2000) suggests a 

heavy-vehicle adjustment factor given as a function of two parame
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truck

ing, lane shifting, and crossover, the lane shifting does not reduce 

the n

ork zone by HCM (2000) indicates that work zones with 

lane merging have a higher average capacity valu

with a lane width of less than the U.S. standard lane width of 12 feet may reduce the work zone 

capacity significantly. The HCM (2000) suggests a reduction factor up to 14% to account for the 

effect of lane width on work zone capacity. 

Work zone capacity may decrease as the work intensity increases from the lightest (e.g. 

guardrail installation) to the heaviest (e.g. bridge repair). The intensity of work activities 

s. The presence of grades may exacerbate the flow constriction in work zones particularly 

in the presence of heavy vehicles.  

Measurements made at freeway work zones in Texas (Dudek and Richards, 1981; 

Krammes and Lopez, 1994) and North Carolina freeways (Dixon and Hummar, 1995; Dixon at 

el, 1997) show clearly that the work zone capacity varies significantly with the number of 

freeway lanes as well as number of lane closures. Among three commonly used work zone 

layouts, known as lane merg

umber of open lanes in the work zone but may affect the work zone capacity. The capacity 

value recommended for long-term w

e than those with a crossover. A work zone 

depends on a number of factors such as the type of work activities, the number of crews, the 

number and size of equipments, and the proximity of work activities to the open lane. The work 

zone intensity is classified into three levels (low, medium, or high) in Karim and Adeli (2003) 

and six levels in Dudek and Richard (1981). The HCM (2000) suggests a modification of the 

base capacity value of the work zone to account for the intensity of work activity without 

actually providing any modification factors or guidelines. This important issue is left for the 

work zone engineer to decide subjectively based on his/her experience or professional judgment. 
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Work intensity is a qualitative and subjective concept without any standard classification 

scheme. In this article, the work intensity is divided into six categories as defined in Table 1.  

The length of the closure affects the work zone capacity. Longer work zones often indicate 

more intensive work activity and display more traffic signs causing travelers to drive more 

cautiously. A lower speed limit is often enforced in the work zone to improve safety which 

The workday (weekdays or weekends) and work time (daytime or night) also affect the 

work zone capacity. In all likelihood commuters and regular travelers during the weekdays are 

ore fa

decreases the work zone capacity.  

Ramps proximity to the work zone, especially the entrance ramps inside the work zone 

activity area, can create traffic turbulence resulting in a reduction in the work zone capacity.  

The HCM (2000) suggests an adjustment for ramps without actually providing any modification 

factors. Again, the issue is left for the work zone engineer to decide subjectively based on his/her 

experience. Al-Kaisy et al. (2000) suggest that both duration of work zone and driver 

composition can affect the work zone capacity. The average capacity at long-term freeway work 

zones is greater than that at short-term work zones because the commuters and frequent travelers 

become familiar with the configuration of the long-term work zone.  

m miliar with the configuration of the work zone and the traffic control plans in the affected 

areas (e.g. route diversion) than non-commuters (e.g. tourists) traveling during the weekends. 

Night construction on the one hand can help increase the work zone capacity by avoiding traffic 

congestion during peak hours, and on the other hand can decrease the work zone capacity 

because of the reduced travelers’ attention (Al-Kaisy and Hall 2001).  
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Weather (snowy, rainy, or sunny) and pavement conditions will have a significant impact 

on the work zone capacity. The HCM (2000) suggests 10 to 20 percent capacity reductions due 

to bad weather conditions without providing any speci s left

the work zone engineer to decide subjectively based on his/her experience or professional 

judgment. Similarly, wet or icy pavement surface in the work zone forces the travelers to lower 

   

fic guidelines. Again, the issue i  for 

their speed in the work zone, which reduces the work zone capacity. The HCM (2000) provides 

no guidelines in this regard. 

Symbolically, the work zone capacity can be expressed as a function of 17 variables 

defined in the previous paragraphs:  

),,,( 1721 xxxfy K=       (1) 

The work zone capacity cannot be described by any mathematical function because it is a 

complicated and non-quantifiable function of a large number of interacting variables some of 

which are linguistic.  

 In the new work zone capacity estimation model, some of the variables are linguistic such 

as work zone layout and weather conditions, some are binary two-valued parameters such as the 

interchange effect representing the existence of ramps near or within work zone, and others are 

numeric such as the work zone length. Spline-based nonlinear functions are used to quantify 

each linguistic as well as binary-valued variable mathematically. Spline-based nonlinear 

functions are also assigned to numeric variables in order to model the impact of their variations 

on the work zone capacity. These functions play another role, that is, to normalize the variables 

into the same range, 0 to 1. This normalization is desirable in the fuzzy inference mechanism 

VARIABLE QUANTIFICATION AND NORMALIZATION 
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developed in this work. The normalization prevents the undue domination of variables with large 

numerical values over the variables with small numerical values, thus improving the 

convergence of the network training. Compared with the conve

the nonlinear normalization using spline-based functions represents the data variation more 

accurately.  

 Integer numbers are used to quantify the linguistic and binary-valued variables. Numbers 

e shifting, and 

rom six different states and the city of Toronto).   

based nonlinear functions for variables 1 to 17 are shown in 

 lane closures), x6 (work zone 

layout), x7 (work intensity), x10 (interchange effects), x11 (work zone location), x12 (work zone 

13 14 15 16 (pavem 17 

(driver composition), and x18 (data collection locality), an S-shaped spline-based nonlinear 

function is used, as defined by the following equation (Figure 1a): 

ntional linear data normalization, 

1, 2, and 3 are used to represent the three types of layouts (lane merging, lan

crossover), weather conditions (sunny, rainy, or heavy snowfall), and pavement conditions (dry, 

wet, or icy). Numbers 1 and 2 are used to represent the work zone location (urban or rural), work 

zone duration (short-term or long-term), work time (day or night), and day of week (weekday or 

weekend). Numbers 1 and 2 are also used to represent the binary-valued variables interchange 

effect (1 for no ramp and 2 for existence of ramp), driver composition (1 when it is not 

considered and 2 when it is considered), and pavement grade (1 when there is no grade and 2 for 

existence of grade). Numbers from 1 to 6 are used to represent the work intensity as defined in 

Table 1. Numbers from 1 to 7 are used to represent the seven localities where data are collected 

(Data used in this research are collected f

 The normalized spline-

Figure 1. The value of each normalized function varies from 0 to 1. For variables x1 (percentage 

of truck), x2 (pavement grade), x3 (number of lanes), x4 (number of

duration), x  (work time), x  (work day), x  (weather condition), x ent condition), x
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where bi is the upper bound for variable xi. The upper bound is different for various input 

variables. The values of the upper bound used in this work for various variables are summarized 

in Table 2. When no data are available for any particular variable xi, the value of that variable is 

entered as zero in the S-shape spline function, Eq. (2), o f z

for qi.  

 resulting in a c rresponding value o ero 

For variables x5 (lane width), x8 (length of closure), and x9 (work zone speed), a Z-shaped 

spline-based nonlinear function is used, as defined by the following equation (Figure 1b): 
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function to reflect the fact that an increase in the value of these variables 

increases the work zone capacity. Further, in contrast to the S-shape spline function, Eq. (2), the 

Z-shape spline function, Eq. (3), is a function of a  l

bound values used in this work for variables x5, x8, and x9 are summarized in Table 2. When no 

⎧

i and bi are the lower and upper bounds for variable xi. Note that for the three variables 

lane width, length of closure, and work zone speed, a Z-shape spline function is used instead of 

an S-shape spline 

non-zero ower limit. The lower and upper 
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data are available for variable xi (i = , 8, 9), t e corresponding upper bound is entered in t

shape spline function, Eq. (3), resulting in a value of zero for q

 5 h he Z-

n

i.  

 The work zone capacity is also normalized to the range of zero to one using the following 

linear function:  

)/()( CCCCC minmaxmin −−=      (4) 

where nC  is the normalized work zone capacity, and minC  and maxC  are, respectively, the 

minimum and maximum work zone capacity values for all the training data set. 

NEURO-FUZZY MODEL FOR WORK ZONE CAPACITY ESTIMATION 

 An adaptive neuro-fuzzy model is developed for the nonlinear mapping of the inputs 

described earlier and the output, the freeway work zone capacity, incorporating fuzzy logic and 

neurocomputing concepts. Fuzzy logic is an effective approach for representing a) imprecision 

and b) linguistic variables (Adeli and Hung, 1995; Adeli and Park, 1998; Zadeh, 1978). Neural 

network algorithms are powerful in providing solutions to complex pattern recognition problems 

where an analytical solution cannot be found (Adeli 2001; Adeli and Hung 1995; Adeli and 

arim,

Fuzzy Inference Mechanism 

N f

im

K  2001). In the neuro-fuzzy model for work zone capacity estimation, a backpropogation 

neural network is employed to estimate the parameters associated with the membership functions 

used in the fuzzy inference mechanism.  

 A fuzzy logic inference mechanism is employed using a set of IF-THE uzzy 

plication rules in the following form (Sugeno and Kang, 1988): 
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IF 1,iµ : q , AND 1 2,iµ : q , AND, ..., AND 2 18,iµ : q  THEN ( )∑=
18

)(qqCC µ  Ni  , ,1L=   (5) 18
=1

,
j

jjijni

where  are the 18 normalized input variables defined by Eqs. (2) and (3), 181 ji ,,, qq K µ  is the 

membership function or the degree of membership of variable j in the i-th fuzzy implication rule, 

ji ,µ : jq  indicates the degree of membership of  is jq ji ,µ ,  is the value of the work zone 

capacity obtained from rule i, is the n

iC

nC  ormalized measured work zone capacity defined from 

Eq. (4), and N is the total number of fuzzy implication rules.  

 In this work, a bell-shaped Gaussian function is used for the membership function in the 

following form:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2

, 2

)(
exp)(

ij

ijj
jji

cq
q

σ
µ  i = 1, …, N j = 1,… 8  ,1 (6) 

where ijc  and ijσ  represent the center and the half-width of the membership function for the j-th 

variable and i-th fuzzy implication rule. The former determines the position of the function and 

the latter determines its shape. 

 The total number of fuzzy implication rules, N, is equal to the number of clustering 

centers for any given training data set.  We use a subtractive clustering approach to determine 

the number of clusters and clustering centers. In this approach, it is assumed that each data point 

belon

form (Chiu 1994): 

gs to a potential cluster based on the minimum value of a predefined objective function. 

The approach is explained pictorially for a two-dimensional (two-variable) case in Figure 2. In 

this work, an exponential data density measure is used as the objective function in the following 
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where 
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⎜
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⎝

⎛ −K

k

lk

1

2

r
oq

2

18∑= iXX  is the Euclidean distance,  is the kq 118×  vector of the k-th input data 

set, ol is the  vector of potential cluster data centers, and r is the  vector of  

prede

on different values 

have t

or 

the data intensity measure or the objective function defined by Eq. (7) (Figure 2a). The data set 

yielding the smallest objective function is selected as the first cluster and is excluded from

subtracted set, and the second cluster is identified 

(Figure 2b). This process is continued, finally resulting in N clusters. The selection of the data 

cluster radius (a value between 0 and 1) is a trial-and-error process. A smaller value of the 

ber of clusters should be just large enough to 

provide accurate results. 

In Eq. (6), t z

c o1 to o18, and the 

initial values of

118× 118×

fined data cluster radii. Since all data have been normalized to the range 0 to 1, a constant 

value of r, in the range of 0 to 1, is chosen for all the radii corresponding to various variables. 

This is another advantage of normalizing the data. Without such normalizati

to be chosen for various radii. At he beginning, K is equal to the total number of training 

data sets, M. In other words, we start with K cluster centers and compute K different values f

 

further processing. Next, the subtractive clustering algorithm is applied to the remaining data 

points that do not belong to any cluster, or the 

cluster radius leads to a larger number of clusters requiring more computational resources for 

training the network and vice versa. The num

 he initial values of the membership function centers for the ith fuz y 

implication rule, ci1 to ci18, are set to the values of the lustering data centers 

 ijσ  are determined from 

)( min,max, jjij qqr −=σ    i = 1, …, N j = 1,…,18   (8) 
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where r, the cluster center's radius, represents the influence range of the variable, and max,jq  and 

q  are the maximum and minimum values of the j-th variable among all training data sets, 

respectively. The standard deviations of q in the membership function, Eq. (6), may be used to 

min,j

j 

estimate the initial values of  ijσ . In this work, however, Eq. (8) is used instead in order to speed 

up the training convergence of the model.  

 For the fuzzy inference mechanism, any fuzzy implication rule i performs an AND 

operation, that is, multiplying the degrees of membership function of all the variables and 

finding the following output: 

∏
=

jjii =
18

1

)(
j

qw µ      i = 1, …, N      (9) 

This output represents the firing strength of the i-th fuzzy implication rule. The estimated work 

zone capacity, Ĉ , is obtained from the fuzzy inference mechanism as the aggregation (or 

summation) of the outputs of N fuzzy implication rules as follows: 

,

∑
∑=

=

=
N

i

w
N

i
i

i
i

w
CC

1

1

 ˆ               (10) 

Topology of the Neuro-Fuzzy Model 

s the topology of the neuro-fuzzy inference model for estimating the work 

zone capacity. It consists of an input layer, a fuzzy implication layer, and an output layer. The 

input layer has 18 nodes representing the 17 variables defined in the previous section and an 18th 

 Figure 3 show

node to indicate the data collection locality. The values of the variables in the input layer are 
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quantified and normalized to values between 0 and 1, employing the S-shape and Z-shape 

Spline-based nonlinear functions described earlier.  

The fuzzy implication layer consists of two sub-layers. The first (left) sub-layer represents 

the fuzzy membership function layer, where every node represents one Gaussian membership 

function ( ji ,µ ). The number of nodes in this sub-layer is equal to 18N. Each membership 

function is used to map one normalized input variable to one cluster. The second (right) sub-

layer consists of N nodes representing N fuzzy AND operations. The output layer has only one 

node that performs the fuzzy aggregation (summation) operation. The output of this node is the 

estimated work zone capacity.  

Training the Neuro-Fuzzy Model 

The fuzzy inference mechanism presented in a previous section requires estimation of the 

parameters ijc  and ijσ  associated with the membership functions. In this work, the parameters 

are adjusted using the backpropogation (BP) neural network-training algorithm.  

A mean squared error function, ),( ijijcE σ , is defined as the average of the squared 

differences between the measured and estimated work zone capacity values over all the training 

data sets: 

∑
=

nijij M
−=

M

k

kk CCcE
1

2ˆ1),( σ  i = 1, …, N j = 1,…,18  (11) 

where k
nC  and kĈ  are the k-th normalized measured and estimated work zone capacity values, 

respectively.  
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 In this work, the parameters ijc  and ijσ  are updated after all the training data sets are 

applied. In other words, a training iteration or epoch is based on all the training data sets. The 

adjustment is given by the following equation: 

∑
=

ˆ−+=
M

k
jn qCCWW

1
old ij,new ij, )(η    j = 1, …, 18   (12) 

where },{

kk

 (i=1, …, N) represents the parameter set of the membership function, ijijij cW σ= ji ,µ , 

for the j-th variable and i-th fuzzy implication rule, and η  is the learning ratio. 

training the network, one has to be 

cognizant of the over-generalization problem, also known as over-fitting problem in the statistics 

literature. In this work, rather than simply minimizing the error as defined by Eq. (11) we 

employ an optimum generalization strategy in order to avoid over-generalization and achieve the 

most accurate results. This is done by dividing the available data sets for training into two 

groups: a training group and a checking group. The latter consists of only a fraction, in the order 

of 10-20%, of the total data sets available for training chosen randomly. The mean squared error 

term for the training set normally decreases with the number of iterations, as noted by 

convergence curve A in Figure 4. In each iteration of the training stage, the trained network is 

used to estimate the work zone capacity for each set of the checking data sets and their mean 

squared error is computed. The variation of this mean squared error with the iteration number of 

the training set is normally a concave curve with a minimum (curve B in Figure 4). The iteration 

number corresponding to the minimum point on this curve is where the training of the network is 

stopped; the values of the membership function parameters obtained at this iteration provide the 

 The generalization capability of the neuro-fuzzy model demonstrates how accurately it 

can estimate the work zone capacity with a new data set. In 
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optimum generalization results. As observed in Figure 4, at iterations beyond the minimum point 

of curve B, the mean squared error in the checking set increases indicating the over-

generalization of the network.  

 After training of the neuro-fuzzy work zone capacity estimation model using the 

optimum generalization strategy, a third group of data sets, the testing data sets, are used to 

evalu

 Data for training, checking, and testing of the model were collected from the existing 

literature and augmented by four data sets provided by the Ohio Department of Transportation. A 

total of 168 data sets were collected including 9 sets from the state of North Carolina (Dixon and 

94), 

17 se

 in Table 3. None of the data set includes all the 17 input 

varia

f lanes, number of lane closure, work zone intensity, and work zone 

duration) to fourteen (percentage of heavy trucks, grade of pavement, number of lanes, number 

of lane closure, work zone intensity, length of closure, work zone speed, proximity of ramps to 

ate the model. 

DATA COLLECTION FOR TRAINING, CHECKING, AND TESTING THE MODEL 

Hummer, 1995), 79 sets from Texas (Dudek and Rochards, 1981; Krammes and Lopez, 19

ts from California (Krammes and Lopez, 1994), 12 sets from Indiana (Jiang, 1999), 12 sets 

from Maryland (Kim et al., 2001), 4 sets from Ohio, and 35 sets from Toronto, Canada (Al-

Kaisy and Hall, 2001), as summarized

bles used in the new computational model. The number of input variables provided ranged 

from four (number o

work zone, work zone location, work zone duration, work time, work day, weather conditions, 

and driver composition). For those unavailable input variables, values of zero are obtained after 

variable quantification and normalization, as described earlier.  
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The 168 data sets summarized in Table 3 are divided into three parts: 133 sets are used for 

training, 21 sets are used for checking, and finally 14 sets are used for testing the neuro-fuzzy 

work zone capacity estimation model.  

TRAINING AND TESTING THE NETWORK  

After trying several different values, a value of 0.1 was selected for the learning ratio, η , 

and a constant value of 0.3 for the cluster center's radii, r, for various variables. The number of 

clusters resulting from the subtractive clustering approach is 11, which is set to the number of 

fuzzy implication rules, N. In other words, every input node in the network topology presented in 

d work zone capacity values 

for c

6), Toronto (29), and California 

(14), but only two training data sets are available from Ohio. 

are modified or de-noised to make them more representative of actual conditions. First, the data 

Figure has 11 membership functions. Convergence results for training the network based on 133 

training data sets and 21 checking data sets are displayed in Figure 5a. 

Figures 6a and 6b show the normalized measured and estimate

hecking and testing data sets, respectively. There exist four and three outliers in the 

checking and testing data sets, respectively. In this work, an outlier is defined as any point with 

an error value 50% larger than the mean error for all the data points. There are three explanations 

for the existence of outliers: measurement error, inhomogeneity in the collected data (that is, data 

collected in one state may not be representative of data collected in another state), and 

lopsidedness of the data set (that is, some input variables are observed in a small number of data 

sets and other input variables are observed in a large number of data sets). Table 3 shows that a 

large number of training data sets are available from Texas (6

 To improve the estimation accuracy of the new neuro-fuzzy model, the training data set 
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sets yielding outliers are deleted (in the example presented in Figure 6, the outliers are from the 

three localities with the most data, that is, Texas, Toronoto, and California). Next, roughly the 

raining and checking data sets are chosen from various localities randomly and 

rk zone data are available 

ta sets, the parameters of the Gaussian membership functions corresponding to 18 

 are obtained and the corresponding membership functions are 

comp

ge of trucks).  

URACY OF THE ESTIMATED WORK ZONE CAPACITY 

same numbers of t

the network is re-trained. If outliers are observed again after the second training the outlier data 

sets are replaced with new remaining data sets from the same locality and the network is trained 

again. This process is continued until there is no outlier. For the example presented in Table 3, 

the final de-noised data set are presented in Table 4 which includes roughly the same number of 

data sets for each locality except Ohio where only limited measured wo

at the time of this writing. Convergence results for training the network based on the reduced and 

de-noised training data sets are displayed in Figure 5b, which indicates a substantial reduction in 

the error as well as a faster convergence. Figures 7a and 7b show the normalized measured and 

estimated work zone capacity values for checking and testing data sets, respectively, using the 

reduced data set. It is important to note that the mean squared values in Figure 7 using the 

reduced data set is more than an order of magnitude smaller than the values in Figure 6 using the 

raw data. This large reduction in the error indicates a significant improvement in the accuracy for 

estimating the work zone capacity. 

After training of the neuro-fuzzy work zone capacity estimation network using the de-

noised da

variables and 11 clusters

uted. As an example, Figure 8 shows the eleven different bell-shape Gaussian membership 

functions for the normalized input variable q1 (percenta

MEASURING THE ACC
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In order to evaluate the accuracy of the new model, it is compared with two approximate 

empirical equations using the 10 sets of testing data given in Table 4. The input values for the 10 

he following empirical equation for estimating the 

data sets are summarized in Table 5.  

Krammes and Lopez’s (1994) proposed t

work zone capacity:   

NHRIC ××−+= )pcphpl1600( o      (13) 

 zone capacity (vph), I = adjustment value for work intensity ranging from -160 

n HCM (2000), and No = 

 closure. Similar to 

hoose based on prior experience.  

ed 

where C = work

to 160 passenger cars per hour per lane (pcphpl), R = adjustment value for presence of ramps, H 

= adjustment factor for heavy vehicles given as a function of two parameters: proportion of 

heavy vehicles and passenger-car equivalent for heavy vehicles given i

number of open lanes in the work zone. Equation (13) adjusts a single base capacity value of 

1,600pcphpl based on the effects of the intensity of the work activity, percentage of heavy 

vehicles, and presence of entrance ramps near the starting point of the lane

broad guidelines for work zone capacity estimation in HCM (2000), the values of various 

adjustment values are left for the work zone engineer to c

Kim et al. (2001) suggest the following empirical equation for work zone capacity based on 

multiple-variable regression analysis of 12 sets of measured work zone capacity values obtain

in the state of Maryland: 

HGILLHLNC ×− twwwdtcc −−+−−−= 3.21.1063.347.920.90.371.1681857  (14) 

where N  =number of lane closures in the work zone, L  = location of closed lanes (right = 1, 

otherwise =0), H  = percentage of heavy vehicles, L  = lateral distance to the open lane, Lw = 

work zone length, Iw = work intensity, and Gw = work zone grade.  

c c

t d
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The work zone capacity estimates obtained by the new adaptive neuro-fuzzy model as well 

as two empirical equations (13) and (14) are summarized in Table 6. The root mean squared 

obtained for Kim et al. (2001) and Krammes and Lopez (1994) 

ation presented by Kim et al. 

values in terms of number of open , that is perfect 

correlation. The slight departure of the scattered dots representing the estimated work zone 

capacity from the ideal line indicates high estimation accuracy of the new neuro-fuzzy model.  

CONCLUSION 

shaped Gaussian membership 

ifferent states and city of Toronto in Canada.  

 Comparisons with two empirical equations demonstrate that the new model in general 

provides a more accurate estimate of the work zone capacity, specially when the data for factors 

impacting the work zone capacity are only partially available. The new model provides two 

important additional advantages over the existing empirical equations. First, it incorporates a 

large number of factors impacting the work zone capacity. Second, unlike the empirical 

(RMS) error value obtained for the new nuero-fuzzy model, 127, is substantially lower than the 

RMS values 267 and 358 

equations, respectively. The error percentage between the estimated and measured work zone 

capacity values ranges from 0.9 to 13.5 for the new neuro-fuzzy model (less than 10% with the 

exception of one), compared with 0.2 to 21.8 for the empirical equ

(2001), and 0.1 to 23.1 for that of Krammes and Lopez (1994).  

Figure 9 shows a comparison of the estimated ( Ĉ ) and measured work zone capacity (C) 

lanes. The solid line represents ii CC =ˆ

 A novel neuro-fuzzy freeway work zone capacity estimation model is presented in this 

article using fuzzy logic and neurocomputing concepts. A backpropogation neural network is 

employed to estimate the parameters associated with the bell-

functions used in the fuzzy inference mechanism. The network has been trained using measured 

data obtained from six d
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equations, the new model does not require selection of various adjustment factors by the work 

zone engineers based on prior experience. The n odel can be implemented into an intelligent 

decision support system a) to estimate the work zone capacity in a rational way, b) to perform 

scenario analysis, and c) to study the impact

capacity. 
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Table 1. C g ie ork ones d in the new model 

 Intensity level Qua e ples 

 

 

 

 

 

 

ate or s of w intensity in work z  use

litativ  description Work type exam
1 ghLi test  Median barrier Installation or repair 
2 Light  Pavement repair 
3 Moderate Resurfacing  
4 Heavy St ing  ripp
5 ry heavy  Pavement marking Ve
6 Heaviest  Bridge repair 
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l U nd low  limit values used in this work for various variables qi

Norm
Variable 

ble type Upper 
bound 

Lower 
bound 

Tab

alized 

e 2 pper a er

Description Varia

q1 Percentage of truck Numeric 25%  
q2 Pavement grade Binary 2  
q3 Number of lanes Integer 6  
q4 Number of lane closure Integer 5  
q5 Lane width Numeric 12 m 8 m 
q6 Work zone layout Linguistic/Integer 3  
q7 Work intensity Linguistic/Integer 6  
q8 Length of closure  Numeric 5 km 0.5 km 
q9 Work zone speed Numeric 60 km/hr 20 km/hr 
q10 Interchange effects Binary 2  
q11 Work zone location  Binary  2  
q12 Work zone duration Binary 2  
q13 Work time Binary 2  
q14 Work day Binary 2  
q15 Weather condition Linguistic/Integer 3  
q16 Pavement condition Linguistic/Integer 3  
q17 Driver composition Binary 2  
q18 Data collection locality In er 7  teg



 

 

 

 

Table 3.  Raw data for training, checking, and testing the model 
168 data sets State Index Training Checking Testing  

California 1 14 2 1 
Indiana 2 8 2 2 
Maryland 3 8 2 2 
North Carolina 4 6 2 1 
Ohio 5 2 1 1 
Texas 6 66 9 4 
Toronto 7 29 3 3 
Total 133 21 14 

 

 

 

Table 4.  De-noised data for training, checking, and testing the model  
67 data sets State Index Training Checking Testing 

California 1 6 1 1 
Indiana 2 8 2 2 
Maryland 3 8 2 2 
North Carolina 4 6 2 1 
Ohio 5 2 1 1 
Texas 6 8 2 2 
Toronto 7 8 1 1 
Total 46 11 10 
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Table 5 Input values for 10 work zone scenarios used to test the neuro-fuzzy work zone capacity estim
Var. x

154

ation model 
1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

Data 
set 

Truck 
(%) 

Grade 
(%) 

No. 
of 

lanes 

No. of  
Lane 

closures 

Lane 
Width Layout Work 

Intensity

Length 
of 

closure 
(m) 

Speed 
(mph) Ramp Location Work 

dur. 
Work 
time Work day Weather 

Cond. 
Pave.
Cond.

Driver 
comp. State 

1 - - 3 1 - - 3 - - - - Long - - - - - California 
2 32 - 2 1 - M 6 11.7 - - Rural Long Day Weekday - - - Indiana 
3 10 - 2 1 - C 2 11.7 - - Rural Long Day Weekday - - - Indiana 
4 8 5 4 1 - - 1 0.18 30 Yes Urban Short Day Weekday Sunny - 0 Maryland 
5 8.5 0 4 2 - - 6 2.2 21 Yes Urban Short Night Weekday Sunny - 0 Maryland 
6 - - 3 1 12 M - 0.6 - No - Short Day Weekend Sunny - - Ohio 
7 26.2 - 2 1 - - 6 - - - Rural Long Day Weekday - - - N. Carolina 
8 - - 4 1 - - 1 - - - - Short - - - - - Texas 
9 - - 5 3 - - 3 - - - - Short - - - - - Texas 

10 - 3 3 1 - - - - - - Urban Short Day - Sunny Dry 1 Toronto 
M = Merging,   C = Crossover,     - Unavailable data 



 

 

Table 6 Comparison of the work zone capacity estimates obtained from the new neuro-fuzzy model with two empirical equations 
 

Krammes and Lopez 
(1994) Kim et al. (2001) Neuro-fuzzy model (

(vph) 
iĈ )  

State 

Data set 

number

Open 

lanes
Closed 
lanes 

Measured 
values (Ci) 

(vph) Values 
(vph) Error (%) Values 

(vph) 
Error 
(%) 

Values 
(vph) 

Error 
(%) 

California 1 2 1 2600 3200 23.1 3166 21.8 2364.4 9.1 
2 1 1 1308 1307 0.1 1295 1.0 1395.7 6.7 Indiana 
3 1 1 1595 1362 14.6 1464 8.2 1810.2 13.5 
4 3 1 5205 4545 12.7 4695 9.8 5342.6 2.6 Maryland 
5 2 2 2456 3020 23.0 2451 0.2 2687.1 9.4 

North Carolina 6 1 1 1284 1536 19.6 1471 14.6 1272.2 0.9 
Ohio 7 2 1 3318 3200 3.6 3378 1.8 3414.8 2.9 

8 3 1 4590 4800 4.6 5067 10.4 4644.5 1.2 Texas 
9 2 3 2680 3200 19.4 2705 0.9 2899.8 8.2 

Toronto 10 2 1 3904 3200 18.0 3378 13.5 3779.4 3.2 

Root mean square 
10

)ˆ(
10

1

2∑
=

−
i

ii CC
 

358  267  127  
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Figure 9 Comparison of the estimated ( Ĉ ) and measured work zone capacity (C) values 

 



 

 

 

 

 
INTELLIZONE: An Object-Oriented Model for Freeway Work Zone 

Capacity and Queue Delay Estimation 
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INTELLIZONE: AN OBJECT-ORIENTED MODEL FOR FREEWAY WORK 

ZONE CAPACITY AND QUEUE DELAY ESTIMATION 

ABSTRACT: Existing computer models used to estimate queue delay upstream of 

the work zone have a number of shortcomings. They do not provide any model to 

estimate work zone capacity, which has a significant impact on the congestion and 

traffic queue delays. They cannot be used to perform scenario analysis for work zones 

with various characteristics such as work zone layout, number of closed lanes, work 

intensity and work time. In this article, an object-oriented (OO) model is presented 

for freeway work zone capacity and queue delay and length estimation. The model is 

implemented into a interactive software system, called IntelliZone, using Microsoft 

Foundation Classes (MFC) and a hierarchy of multiple specialized frameworks. A 

three-layer application architecture is created to separate the application functions 

and classes from MFC classes. The high-level application domain layer is divided 

into packages.  IntelliZone’s capacity estimation engine is based on pattern 

recognition and neural network models incorporating a large number of factors 

impacting the work zone capacity. This research provides the foundation for a new 
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generation of advanced decision support systems for effective management of traffic 

at work zones. 

Highway agencies are increasingly focusing attention on reconstruction and 

improvement of the existing highway systems in the United States due to the aging 

highway infrastructure. Freeway work zone

INTRODUCTION 

s have become a major source of traffic 

congestion and travelers’ delays which result in reduced freeway capacity, increased 

driver frustration, increased traffic accident, increased road user delay cost, and increased 

fuel consumption and vehicle emissions. Thus, highway agencies are facing with the 

challenging problem of effectively planning and managing the work zone to ameliorate 

its effects on the vehicular traffic. They often use the empirical and highly approximate 

method described in the Highway Capacity Manual (HCM) (HCM, 2000) to determine 

the freeway work zone capacity and to estimate the travelers’ queue delays with lane 

closu

To assist highway agencies to create an effective traffic management plan (TMP) 

for a given work zone, a few models have been proposed to estimate the queue length and 

travelers’ delay associated with work zones. Memmott and Dudek (1984) estimate the 

road user delay costs based on the average speed and average daily traffic (ADT) in 

res. The HCM provides a base capacity of 1600 vehicles per hour per lane (vphpl) 

for short-term ideal highway work zones. Guidelines are given on how to modify the base 

value to take into account percentage of trucks, work intensity, proximity of ramps, and 

lane widths. However, many other additional factors, neglected in the HCM guidelines, 

affect the freeway work zone capacity estimation (Adeli and Jiang, 2003) 
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freeway work zones. Using the deterministic queuing analysis approach and the 

conservation principle of traffic flow, they developed a computer program named 

QUEWZ for Queue and User Cost Evaluation of Work Zones to estimate the user costs 

and queue length for a work zone in the state of Texas. However, the work zone capacity 

is estimated from empirical speed-flow-density relationships independent of the work 

zone characteristics such as work zone layout and work intensity.  

A Microsoft Excel-based model has recently been developed for predicting the 

work zone delay, called QuickZone, based on the deterministic queuing model for each 

network link in the work zone (MITRETEK, 2001). QuickZone estimates the hourly 

delay taking into account the expected time-of-day utilization and seasonal variation in 

travel demand. QuickZone, however, does not have a work zone capacity estimation 

model. Rather, it requires the value of the work zone capacity as input. The accuracy of 

the traffic delay estimates by QuickZone depends heavily on an accurate estimation of 

the work zone capacity.  

The ideal goal of an effective TMP is to minimize travelers’ delays and 

construction and operation costs while enhancing the safety of the travelers and highway 

workers. As such, an accurate estimation of the work zone capacity and travelers’ queue 

length is of paramount importance for creating an effective work zone TMP. However, 

the existing computer models such as QUEWZ and QuickZone used to estimate queue 

delay upstream of the work zone have a number of shortcomings. They do not provide 

any model to estimate work zone capacity, which has a significant impact on the 

congestion and traffic queue delays. They cannot be used to perform parametric or 
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scena

easures, and mobility impacts. A four-set 

case 

mixed real variable-integer cost 

optimization problem for short-term work zones. 

Karim and Adeli (2003) present an adaptive computational model for estimating the 

work zone capacity and queue length and delay taking into account the following factors: 

number of lanes, number of open lanes, work zone layout, length, lane width, percentage 

rio analysis for work zones with various characteristics such as work zone layout, 

number of closed lanes, work intensity and work time.  

To overcome these shortcomings, the senior author and his associates have recently 

developed a number of computational models for accurate estimation of work zone 

capacity and traffic queue delays using computational intelligence approaches such as 

neurocomputing (Adeli and Hung, 1995; Adeli and Park; Adeli and Karim, 2001), fuzzy 

logic, and case-based reasoning (CBR). Karim and Adeli (2002) present a CBR model for 

freeway work zone traffic management. The model considers work zone layout, traffic 

demand, work characteristics, traffic control m

base schema or domain theory is developed to represent the cases based on the 

above characteristics of the problem. Three examples are presented to show the practical 

utility of the CBR system for work zone traffic management. Jiang and Adeli (2002) 

present a new freeway work zone traffic delay and cost optimization model in terms of 

two variables: the length of the work zone segment and the starting time of the work zone 

using average hourly traffic data. The total work zone cost defined as the sum of user 

delay, accident, and maintenance costs is minimized. Number of lane closures, darkness 

factor, and seasonal variation in travel demand normally ignored in prior research are 

included. In order to find the global optimum solution, a Boltzmann-simulated annealing 

neural network is developed to solve the resulting 
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truc

 interactive 

soft

ks, grade, speed, work intensity, darkness factor, and proximity of ramps. The model 

integrates judiciously the mathematical rigor of traffic flow theory with the adaptability 

of neural network analysis. A radial-basis function neural network model is developed to 

learn the mapping from quantifiable and non-quantifiable factors describing the work 

zone traffic control problem to the associated work zone capacity. Queue delays and 

lengths are computed using a deterministic traffic flow model based on the estimated 

work zone capacity. 

In this article, an object-oriented (OO) model is presented for freeway work zone 

capacity and queue delay estimation. The model is implemented into a highly

ware system, called IntelliZone (Intelligent decision support system for work zone 

traffic management). The integration of the modeling, control and decision support 

features is described. 

FUNCTION ARCHITECTURE 

Since 1991, the senior author and his associates have advanced the use of OO 

technology for development of flexible, maintainable, and reusable software systems for 

computer-aided engineering (CAE) applications (Yu and Adeli, 1991, 1993; Adeli and 

Yu, 1993; Adeli and Kao, 1996; Karim and Adeli, 1999a, b). The object in the OO 

technology is a “black box” which abstracts a real world entity by encapsulating its 

characteristics (data and functionality). Abstraction means identifying the distinguishing 

characteristics of an object without having to process all the information about the object. 

Encapsulation is an OOP mechanism that combines data into codes and prevents data and 

codes from outside interference and misuse. The additional two mechanisms provided by 

OOP languages (e.g., Visual C++), inheritance (the process by which the object of one 
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class acquires the properties of another class) and polymorphism (a feature that allows 

one interface to be used for a general class of actions), allow easy extension and 

reusability of previously developed objects. The properly integrated application of 

polymorphism, encapsulation and inheritance provides efficient development and 

management of a complicated software system.  

Figure 1 shows the function diagram of IntelliZone. It consists of four interaction 

stages: input, analysis, output, and TMP stages. In the input stage, the user can select up 

to seventeen input parameters for work zone capacity estimation (noted in the left-upper 

box of Figure 1). For traffic delay and queue estimation, up to four additional parameters 

may be identified in the input stage (noted in the left-lower box of Figure 1). Work zone 

capacity is estimated by IntelliZone. It is also included in the list of input parameters for 

the sake of generality and to allow the user to input any predefined number (e.g., based 

on 

The work zone capacity cannot be mathematically modeled because it is a 

complicated and non-quantifiable function of a large number of interacting variables 

some of which are linguistic (e.g. work intensity). The computational model for work 

zone capacity is the radial basis neural network model presented in Karim and Adeli 

(2003). However, the number of influencing factors considered is increased from eleven 

to s

actual measurements at a particular work zone) or modify the estimated value 

provided by IntelliZone.  

eventeen. Further, the simple backpropagation (BP) neural network algorithm (Hagan 

et al., 1996) is also provided as a second alternative approach for estimation of work zone 

capacity. The queue delay and length estimation model is described in Jiang and Adeli 

(2003). 
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To improve the accuracy of estimation and accelerate the convergence speed of the 

neural network model, the values of the seventeen input variables for work zone capacity 

estimation are quantified and normalized to values between 0 and 1 employing the S-

shape and Z-shape spline-based nonlinear functions described in Adeli and Jiang (2003). 

The normalization prevents the undue domination of variables with large numerical 

valu

ining in estimating work zone capacity. Compared with the conventional 

linear data normalization, the nonlinear normalization using spline-based functions 

represents the data variation more accurately.  

IntelliZone provides three different types of output (Figure 1). The convergence 

results of neural network training can be viewed graphically. Similarly, the hourly queue 

length is presented graphically. A report output can be created where the work zone input 

and output information is summarized along with the results of the queue delay and 

length estimation.  The hourly queue length plot assists the work zone engineer to modify 

the work zone traffic management plan and perform scenario analysis efficiently. For 

example, if the queue length within a given period of the day exceeds the acceptable 

limit, the work zone engineer can improve the work zone TMP by changing the work 

zone schedule (e.g., by changing the work time to avoid the traffic peak), or changing the 

work zone layout to increase the work zone capacity.  

es over the variables with small numerical values, thus improving the convergence of 

the network tra

Figure 2 shows how an effective TMP can be created for a particular work zone 

using IntelliZone interactively.  

APPLICATION ARCHITECTURE  
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The prototype software system IntelliZone is based on the object-oriented software 

architecture using Visual C++ and the Microsoft Foundation Class (MFC) library. Design 

of 

hitecture for constructing an object-oriented intelligent decision 

ematically in Figure 3. Three 

levels of abstractions are modeled in layers. The outermost layer is the MFC shell layer. 

It is a framework created from the standard MFC library which encapsulates the most 

common functionality of the Windows Application Programming Interface (API) into an 

OO interface. The other two layers depend on and use the services of this shell layer. 

Typically, the shell layer provides commonly used data structures, mathematical 

functions, client/server middleware (low-level transaction management software), and 

request brokers (software that manages cooperation and communication among 

heterogeneous software components). The shell layer is closely connected to the 

Windows operating system, and its implementation in the form of a framework is 

available on various W

Depending on the shell layer is the productivity layer (the middle layer in Figure 3). 

In this work, it is subdivided into database and user-interface layers. The database layer 

a complex OOP software system usually requires the hierarchical use of multiple 

specialized frameworks. A framework is a collection of cooperating classes relevant to a 

specific domain (templates used to create multiple objects with similar features). 

Furthermore, the dependencies among the frameworks must be clearly delineated to 

avoid any conflicts. In this work, a layered approach (Baumer et al., 1997, and Karim and 

Adeli, 1999a, b) is used to separate the application functions and classes of IntelliZone 

from MFC classes, thus allowing for ease of development and maintenance.  

The application arc

support system for work zone management is shown sch

indows operating systems. 
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provides an interface to the applications for data management, storage, and retrieval, 

including generating report document, processing data, and utilizing the existing 

databases. The frameworks in the user-interface layer aid in the design of user-friendly 

interactive interfaces. All input and output in the software are communicated through the 

user-interface layer. Depending on both the shell and productivity layers are the 

application domain layer. Generally, this layer contains algorithms and computational 

models for the solution of specific problems in the domain. It is usually subdivided to 

further categorize and generalize the application domain requirements. One or more 

frameworks may be used to implement this layer. In this work, four application 

fram

ed-line arrows 

ind

eworks are created in the domain layer to represent input variable 

quantification/normalization, traffic demand computation, work zone capacity estimation, 

and travelers’ queue delay estimation. 

Figure 4 shows the IntelliZone application architecture for freeway work zone traffic 

management in the form of a package diagram. This diagram shows the breakdown of the 

application into packages and their dependencies. Generally, a package is a collection of 

related software elements, which may be classes, components, or frameworks. In this 

work, the packages represent a collection of classes. In Figure 4, the dash

icate the dependency of a package on another. A software dependency exists if any 

change in a package requires a change in the dependent package.  

The high-level application domain layer is divided into two packages: an Application 

package and a Domain package. The Application package consists of the Model package 

and the User interface package. The Model package in turn contains four packages for 

input variable quantification/normalization, work zone capacity estimation, traffic 
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demand computation, and travelers’ queue delay estimation. The Domain package 

contains two software packages, one for work zone scenario design and modification and 

the other for displaying queue length at various hours of the day. The Application and 

Domain software packages depend on the Graphics package, File and database support 

package, and Miscellaneous support package of the MFC library.  

The execution of packages is controlled by an MFC class, CObject, which has global 

CLASS

rit their properties. Functions of classes 

in Figu

dependency.   

 DIAGRAM 

IntelliZone is designed to run under all 32-bit Microsoft Windows environments such 

as Microsoft Windows 95/98/2000 and Windows NT 4.0 or above version. Figure 5 

shows the  main classes for the controlling class, CObject, used in IntelliZone. Five 

control classes are used for overall work zone project management (CWzProject), 

interface windows for user-friendly data input/modification (CDialog), operation action 

for performing various computations (CAction), document management (CDocment), and 

graphical view (CView). These classes are directly derived from the MFC class CObject 

to take advantage of the services provided for object storage and retrieval. Sub-classes 

are derived from the five control classes and inhe

re 5 are described briefly in Appendix I. Figures 6 and 7 show the classes, their 

inter-relationships, and the main methods used in each class for the work zone capacity 

estimation, and queue delay and length estimation parts of IntelliZone, respectively. 

Every box represents a class. The methods encapsulated in a class are listed in the box. 

The classes in boldface are derived directly from an MFC class and classes in italic 

represent non-MFC classes. Each one of the latter classes performs only a particular 
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function and is therefore called a method class. The methods of classes in Figure 6 and 7 

are described briefly in Appendix II.  

Figure 8 shows the information flows and exchanges among various user interface 

windows. The sequence of user interactions with various interface windows is identified 

by shaded boxes from the bottom to top along the double-line arrows. The input/output 

information flow and exchanges are executed along the dashed line arrows. A freeway 

work zone project is divided into several work zone segments based on the construction 

schedu

IntelliZone provides an interactive user-friendly interface for training and using the 

neural network models to estimate the work zone capacity. Figure 9 shows the 

introductory screen shot of IntelliZone. The menu bar in the top provides the options 

Capacity (for capacity estimation), Delay (for traffic queue delay estimation), and Result 

(for displaying the results). The Capacity option provides three dialog boxes:  Project 

Information (Figure 10), Work Zone Scenarios (Figure 11), and Work Zone Capacity 

Estimation (Figure 12). All input data entry and modification for work zone capacity 

estimat

The dialog box in Figure 10 provides the interface for inputting the basic information 

about a given project, including project identification (ID) number, name, description, 

location and address as well as project length. With the exception of the project length, 

le. Work zone capacity and traffic queues are estimated for every segment. The 

work zone capacity and traffic queue are re-estimated after any parameter change in any 

user-interface dialog.  

USER INTERFACE FOR CAPACITY ESTIMATION 

ion are handled by these dialog boxes. 
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the information provided in this dialog box does not affect the work zone capacity 

estimation and queue length estimation. Figure 11 shows the main dialog box for 

inputting the values for up to seventeen input variables used in the capacity estimation 

model. The user provides numerical input values for 7 variables and chooses from a 

number of options for the remaining variables. For example, for the work zone intensity 

the user chooses from 6 different intensity levels. The user can input for up to 20 

different scenarios. The data for various scenarios are summarized in a list box at the 

bottom of the dialog box.  When a data item is not available the default value of N/A is 

used to indicate the lack of data.  

The dialog box in Figure 12 provides the user-interface for capacity estimation of the 

work z

e results for training 

and tes

one scenarios using either the backpropagation or fuzzy-radial basis function 

neural network model. Each neural network model has been trained using actual data. 

The results are saved as the weights of the links. The user can use each neural network 

model with saved values for the weights, or alternatively, ask for new network training 

with a new set of randomly initialized weights. The dialog box in Figure 12 also allows 

up to 20 different work zone capacity estimations using different scenarios, different 

neural network models, and with or without new training of the network.  

The introductory screen of IntelliZone is divided into three windows (Figure 9). The 

Result option in the menu bar guides the user to two other multi-window screens. The 

first option, Training Curve, leads to the three-window screen shown in Figure 13. First, 

an option dialog is popped up asking for the capacity ID. Then, th

ting of the network are displayed. The left window provides numerical results for 

the training and testing of the neural network. The upper right window displays the 
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testing results graphically along with the desired results for the data used to train the 

network. It shows the accuracy of the trained neural network model for estimating the 

work zone capacity. The lower right window displays the training and checking curves. 

The lowest point in the checking curve (iteration number 23 in Figure 13) represents the 

 training with the best generalization (Adeli and Jiang, 

2003). 

The Delay option in the top menu bar (Figure 9) guides the user to three dialog 

boxes. The entry and modification of input information for work zone queue estimation is 

handled by three dialog boxes shown in Figs. 14 to 16. Figure 14 shows the Work Zone 

Segment input dialog box. For convenience of scheduling and construction, a work zone 

project is usually subdivided into several work zone segments. Each work zone segment 

is defined by a unique ID number. The start and finish dates and times (in increments of 

half an hour), length, and number of open lanes for each segment are also entered in this 

dialog box. The work zone segment duration is automatically calculated based on the 

start and finish dates and times. A summary of the input values for all the segment (up to 

20) is displayed at the bottom of the dialog box.  

to uniquely identify the traffic flow set. For the same work zone segment, different traffic 

iteration number for the network

The results of training at this iteration are used in the neural network model. 

USER INTERFACE FOR QUEUE ESTIMATION 

Figure 15 shows the Work Zone Traffic Flow dialog box which is used to input 

the average hourly traffic flow from an existing hourly flow file. The flow file can 

include traffic flow data for multiple years. If the work zone project is for a future time 

the work zone engineer can modify the data by providing appropriate seasonal and 

diversion factors to be discussed in the next dialog box. A traffic flow ID number is used 

 178



 

flow sets can be inputted. This is helpful for scenario analysis and studying the impact of 

various traffic flows on the work zone queue delay and length estimation.  The values for 

other parameters such as work zone start and finish dates and times are inherited directly 

from the previous dialog box. Every set of hourly traffic flow data is also summarized in 

a box a

n. 

The res

If the existing flow data take into account the seasonal variation of the traffic the 

user (work zone engineer) shall enter a default value of one for the seasonal factor. 

Otherwise, the user will have the option to adjust the approaching traffic flow for 

seasonal variations by choosing a seasonal factor in the range of 0.5 to 2.0. The diversion 

factor is used to take into account the effect of an intersection close to the work zone or a 

t the bottom of the dialog box where each line represents the traffic flow data for 

up to 24 hours in a day (when the duration of the work zone is more than one day, the 

flow data are presented in multiple lines).  

Figure 16 shows the dialog box for work zone queue delay and length estimatio

ults can be obtained for any combination of work zone segment, traffic flow, and 

work zone capacity. In this dialog box the user is asked to enter the traffic flow and work 

zone capacity ID numbers (every traffic flow is associated with a given work zone 

segment ID number described in the previous dialog box, Figure 15), seasonal demand 

factor, diversion factor (e.g., for a 10% diversion, the factor is 0.9), and average length 

for vehicle occupancy. If a value of zero is entered for the last item, only queue delay in 

vehicles per hour per lane for every hour of the day and its maximum value during the 

day are presented in the box at the bottom of the dialog box. Otherwise, the total queue 

length in km or mi in every hour of the day as well the maximum queue length during the 

day are presented.  
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residential street in an urban area. An intersection close to work zone creates traffic 

diversion and affects the anticipated hourly traffic flow approaching the work zone. If the 

traffic flows approaching 

the work zone then the user will enter a default value of one for the diversion factor. 

Otherwise, the user will have the option to adjust the approaching traffic flow by 

e work zone segment capacity 

use

mo  number is available based on actual measurements in the particular 

f the introductory screen 

I

option, Training Curve, was presented in Figure 13. The second option, Queue Graphs, 

g is 

p asking for the queue ID from dialog box shown in Figure 16. Then, the results 

for f  provides numerical 

values 

length right-upper window displays the traffic flow graphically in the 

form o ic flow in 

every day is noted in the display. The lo

length. The m

ultaneous execution of multiple work zone projects, each 

having different segm r various projects are saved and may be 

traffic diversion is taken into account in the anticipated hourly 

choosing a diversion factor in the range of 0.5 to 0.99. Th

is obtained from the capacity estimation model described in the previous section. But, the 

r is provided with the option of overriding the computed work zone capacity in case a 

re accurate

locality. 

As mentioned earlier, the Result option in the menu bar o

of ntelliZone (Figure 9) guides the user to two other multi-window screens. The first 

leads to the three-window screen shown in Figure 17. First, a Graph Option dialo

popped u

tra fic flow and queue delay are displayed. The left window

of the work zone traffic flow and queue delay (in vehicles per hour per lane) or 

(in km or mi). The 

 f a bar diagram as a function of the hour of days. The maximum traff

wer-right window displays the queue delay or 

aximum queue value is also indicated in the display.  

IntelliZone allows sim

ents. The results fo
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disp y ple 

of Figure 18. The Result option in the menu bar of the introductory screen of IntelliZone 

(Fig e rt file 

for eve

ILL S

Indiana, Maryland, North Carolina, and Texas. They are described in Adeli and Jiang 

(2003) and will not be repeated here. As an illustrative example, IntelliZone is used to 

esti t enario with measured 

dat r  I-

95 with one lane closure. Dixon et al. (1997) provide values for only nine out of 

sev e  the example are 

tho u one 

len , s, 

and e

and the driver com osition in this example.  

results are sum seven different values are used for the lane 

width in the work zone ranging 

different truck percentages. In this case, for the percentage truck of 26.2, the estimated 

work zone capacity ranges from 820 vphpl (for lane width of 9) to 1312 vphpl (for lane 

width of 12 ft). The measured value provided by Dixon et al. (1997) for the same truck 

percentage of 26.2 is 1284 vphpl. When the truck percentage is decreased to 18.8, the 

la ed by toggling back and forth among various windows, as shown in the exam

ur  9) creates a text file for input as well as output the results. It provides a repo

ry project. 

U TRATIVE EXAMPLE 

The data used for training the neural networks were obtained from California, 

ma e the work zone capacity for an actual freeway work zone sc

a p ovided by Dixon et al. (1997). The work zone site is a two-lane rural freeway on

ent en input variables available in IntelliZone. The input values for

se sed in Figure 11. Data are not provided for pavement grade, lane width, work z

gth  work zone speed limit, proximity to a ramp, weather and pavement condition

 th  driver composition. No values are used for pavement grade, work zone length, 

p

Two different groups of scenario analysis are performed for this example. The 

marized in Table 1. In group a) 

from 9 ft to 12 ft in increments of 0.5 ft along with two 
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esti t hpl 

(for lane width of 12 ft). The measured value provided by Dixon et al. (1997) for the 

sam n the traffic flow 

red s

ay and 

weekend) are considered while keeping the lane width constant at 12 ft and the truck 

per t ts are summarized in Table 1. 

The o end. 

sured in a work zone in a two-lane freeway in the state of 

 for 

esti t oaching a 

wor  (flow.txt) 

and s ction is 

app ed 

into two work zone segm

is used. The work zone queue delays and 

hours are shown in Figure 16. Only part of the result can be seen in Figure 16. To see the 

entire results the user has to scroll down and ated 

results are also shown graphically in Figures 17 and 18. 

FINAL COMMENTS 

An OO model is presented for freeway work zone capacity and queue delay and 

length estimation. The model is implemented into an advanced intelligent decision 

ma ed work zone capacity ranges from 858 vphpl (for lane width of 9) to 1339 vp

e truck percentage of 18.8 is 1327 vphpl. A high truck percentage i

uce  the work zone capacity value, as expected.  

In group b), freeway work time (daytime or night) and workday (weekd

cen ages the same as those used in group a). The resul

 w rk zone capacity is the lowest when work is performed at night in the week

Traffic flow data mea

North Carolina with one lane closure are employed to illustrate the use of IntelliZone

ma ing the work zone queue delay or length. The hourly traffic flows appr

k zone on route NC 147, 0.1 miles south of SR 1171, are stored in a text file

 u ed in the input dialog box (Figure 15). The period of data colle

roximately one year (year 2000). For the illustrative example, the project is divid

ents as shown in Figure 14. A vehicle occupancy length of 10 ft 

lengths estimated by IntelliZone at various 

to the right in the list box. The estim
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sup rt

has the

•  

• Capability of handling multiple-segment and multiple-traffic flow strategies; 

• A mechanism to handle varying work zone scenarios. 

• l 

ork zone 

 Inte

F MAIN CLASSES SHOWN IN FIGURES 5 

put 

 

 CCapacityDoc: Records the capacity estimation result for a work zone project. 

• CCapacityView: Provides an interface for graphically viewing the neural network 

training results. 

po  system, called IntelliZone, for effective management of work zones. IntelliZone 

 following features and advantages: 

Integrated work zone capacity and queue estimation model.

IntelliZone’s capacity estimation engine is based on pattern recognition and neura

networks models incorporating a large number of factors impacting the w

capacity.  

• lliZone provides a highly interactive user-interface with all the tools necessary for 

scenario analysis and effective control of work zone traffic. 

• IntelliZone provides a context-sensitive help facility readily available at any point of 

execution of the software. 

APPENDIX I. DESCRIPTIONS O

AND 6 

• CAction: Provides an interface for managing actions (in

quantification/normalization, traffic demand computation, and capacity and queue 

delay estimation). 

• CBPnetwork: Encapsulates the backpropagation neural network model. 

• CCapacityDialog: Provides an interface for estimating the work zone capacity.

•
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• CFlowDialog: Provides an interface for inputting/modifying multi-flows for a 

work zone segment. 

trols the graphic presentation of results. 

terface for graphically viewing the queue results. 

ulti-scenarios provided 

 CTrafficFlowDoc: Records traffic flows for a work zone project. 

• CWzCapacity: Provides an interface for estimating work zone capacity. 

• CWzProject: Provides an interface for managing a work zone project. 

• CIntelliZoneDoc: Controls the presentation of results in the form of texts or 

documents. 

• CIntelliZoneView: Con

• CProjectDoc: Provides an interface for a work zone project application document. 

• CQuantify: Quantifies and normalizes input variables for work zone capacity 

estimation. 

• CQueueDelay: Encapsulates work zone queue delay model. 

• CQueueDialog: Provides an interface for inputting/modifying multi-queues by 

users. 

• CQueueDoc: Records the queue results for a work zone project. 

• CQueueView: Provides an in

• CRBFnetwork: Encapsulates fuzzy-radial basis function neural network model. 

• CScenarioDialog: Provides an interface for abstracting m

by the user. 

• CSegmentDialog: Provides an interface for abstracting multi-segments provided 

by the user. 

• CTrafficFlow: Encapsulates multi-flows for a work zone segment. 

•
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• CWzProjectDialog: Provides an interface for abstracting a work zone project 

provided by the user. 

• CWzQueue: Encapsulates multi-queues for a work zone project. 

provided by the user. 

ided by the user. 

network algorithm. 

 

• GenerateNetwork(): Generates a network for the neural network model. 

 GetLength(): Sets the value of the length provided by an input dialog box. 

• NormalizeVariable(): Normalizes variables to the range of 0 to 1 by using a 

nonlinear normalization function. 

• OnInitDialog(): Initializes a dialog. 

• CWzScenario: Abstracts a work zone segment scenario. 

• CWzScenarioDialog: Provides an interface for abstracting multi-scenarios 

• CWzSegment: Abstracts a segment of a work zone. 

• CWzSegmentDialog: Provides an interface for abstracting multi-segments 

prov

APPENDIX II. DESCRIPTIONS OF MAIN METHODS IN FIGURES 6 AND 7 

• AdjustWeights(): Adjusts the weights of the links in the neural network 

• BPnetwork(): Executes the backpropagation neural 

• ClusterCenters(): Creates cluster centers using fuzzy c-means algorithm. 

• ComputeFlow(): Modifies the traffic flow using seasonal and diversion factor. 

• ConvertDate(): Converts the value of date to hour.

• ConvertUnits(): Converts the value of an input provided in SI units to a value in 

the U.S. customary system of units. 

•
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• PropagateNet(): Propagates the errors from the hidden layer to the output layer in 

the backpropagation neural network model. 

• QuantifyVariable(): Quantifies the linguistic variables. 

• QueueEstimate(): Executes traffic flow queue delay and length estimation. 

• RBFnetwork(): Executes radial basis function neural network algorithm. 

• Sshape(): Uses S-shape spline-based nonlinear normalization function. 

• TrainNet(): Trains the neural network model using the normalized training data. 

• Zshape(): Uses Z-shape spline-based nonlinear normalization function. 
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Table 1 Scenario analysis and influence of input variables for work zone capacity 
determination 

State: North Carolina               Location: Rural                       Work duration: Long-term 
Number of lanes: 2                   Number of lane closures: 1    Truck percentage: 26.2 and 18.8       
Work intensity: 6                     Work time: day                       Workday: weekday 
Measured work zone capacity: 1284 and 1327 vphpl              Method: RBF network 

Estimated capacity (vphpl) Group Scenario No. Lane width (feet)
26.2% trucks 18.8% trucks 

 1 9.0 820 858 
 2 9.5 943 986 

(a) 3 10.0 1093 1140 
 4 10.5 1206 1257 
 5 11.0 1259 1313 
 6 11.5 1280 1334 
 7 12.0 1312 1339 
 Scenario No. Work time Workday Estimated capacity (vphpl) 
 1 Daytime Weekday 1265 

(b) 2 Night Weekday 1183 
 3 Daytime Weekend 1008 
 4 Night Weekend 934 
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Figure 3 Schematic view of application architecture for constructing IntelliZone 
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Figure 5 Main classes for the controlling class, CObject 
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Figure 6 Classes, their inter-relationships, and the main metho
for the work zone capacity estimation 
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 Figure 8 Information flows and exchanges among various user interface windo
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Figure 9 Introductory screen of IntelliZone 
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Figure 10 Project information dialog box 



 

 
 

Figure 11 Work zone scena
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Figure 12 Work zone capacity estimation dialog box 
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Figure 13 Multi-window interface for training the neural network 

 

 



 

 

 

 

 

 

  

 

 

 Figure 14 Work zone segment 
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Figure 15 Traffic flow input
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Figure 16 Queue delay e
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Figure 17 Multi-window interface for displaying the traffic flow and queue delay results  
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Figure 18 Toggling back and forth among traffic flow and queue delay windows



 

 

 

 

 

 

 
 
 

Part VI 
 

Clustering-Neural Network Models and Parametric Study of Work 
Zone Capacity 
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CLUSTERING-NEURAL NETWORK MODELS AND 

i o

(

ristics of training stability, accuracy, and quick convergence. The 

results of validation indicate that the work zone capacity can be estimated by clustering-

neural network models in general with an error of less than 10%, even with limited data 

available to train the models. The clustering-RBFNN model is used to study several main 

factors affecting work zone capacity. The resu

PARAMETRIC STUDY OF WORK ZONE CAPACITY 

Xiaomo Jiang11 and Hojjat Adeli12

ABSTRACT: Two neural network models, called clustering-RBFNN and clustering-

BPNN models, are created for estimating the work zone capacity in a freeway work zone 

as a function of seventeen different factors through jud cious integration f the 

subtractive clustering approach with the radial basis function RBF) and the 

backpropagation (BP) neural network models. The clustering-RBFNN model has the 

attractive characte

lts of such parametric studies can assist 

work zone engineers and highway agencies to create effective traffic management plans 

(TMP) for work zones quantitatively and objectively.  

 

 

                                                           
11Graduate Research Associate and PhD student, Dept. of Civil and Environmental Engineering and 

Geodetic Science, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave., Columbus, OH, 43210, 

USA. Jiang.98@osu.edu 

12Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State 

niversity, 470 Hitchcock Hall, 2070 Neil Ave., Columbus, OH, 43210, USA. Adeli.1@osu.edu U
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INTRODUCTION 

The work zone capacity in freeways  u is sually defined as the mean queue discharge 

flow 

rate results. Comparisons with two 

empir

when the data for factors impacting the work zone capacity are only partially available, 

rate at a freeway work zone bottleneck (any constricted location that restricts the 

flow of vehicles in a work zone) (HCM, 2000). The work zone capacity is a complicated 

and non-quantifiable function of a large number of interacting variables some of which 

are linguistic such as work zone layout and weather conditions, which explains the dearth 

of scientific work on mathematical modeling of the freeway work zone capacity. Karim 

and Adeli (2003) present an adaptive computational model for estimating the work zone 

capacity and queue length and delay taking into account the following factors: number of 

lanes, number of open lanes, work zone layout, length, lane width, percentage trucks, 

grade, speed, work intensity, darkness factor, and proximity of ramps. The model 

integrates judiciously the mathematical rigor of traffic flow theory with the adaptability 

of neural network analysis.  

In a recent article, Adeli and Jiang (2003) present a new neuro-fuzzy model for 

estimating the work zone capacity taking into account seventeen different numeric and 

linguistic factors. A backpropagation neural network is employed to estimate the 

parameters associated with the bell-shaped Gaussian membership functions used in the 

fuzzy inference mechanism (Zadeh, 1978). An optimum generalization strategy is used in 

order to avoid over-generalization and achieve accu

ical equations demonstrate that the new neuro-fuzzy model has the following 

advantages: 1) it incorporates a large number of factors impacting the work zone 

capacity, 2) it provides a more accurate estimate of the work zone capacity, especially 
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and 3) unlike the empirical equations, the new model does not require subjective 

selection of various adjustment factors or values by work zone engineers based on prior 

exp rienc

However, the existing models for freeway work zone capacity estimation cannot yield

e e. 

 the required acc

create the clustering-RBF and clustering-BF neural network models. The two clustering-

neural network models are developed for estimating the work zone capacity in a freeway 

work zone as a function of seventeen different factors.  

The clustering-RBFNN model investigated in this research is a modification of the 

fuzzy-RBFNN model of Karim and Adeli (2003). Work zone patterns are first grouped 

approach. Sim

 of the clusters. 

3) use the fuzzy c-means algorithm (Adeli and Karim, 2000) to find 

the c

xcept that the neural network classifier in the former is the 

simple BP algorithm and in the latter is the RBFNN.  

 

into similar clusters using a data clustering ilarity of any new work zone 

pattern to the training patterns is measured by its proximity to the centers

Karim and Adeli (200

luster centers. In this work, the subtractive clustering approach described in Adeli 

and Jiang (2003) is used to determine the optimum number of clusters and clustering 

centers where it is assumed that each data point belongs to a potential cluster based on 

the minimum value of a predefined objective function. Subtractive clustering is an 

effective approach for grouping data into clusters and discovering structures in data 

(Chiu, 1994; Yager and Filev, 1994). The clustering-BPNN model is similar to the 

clustering-RBFNN model e
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FACTORS IMPACTING THE WORK ZONE CAPACITY 

Seventeen different numeric and linguistic factors are used in the developed 

clustering-neural network models: 1) percentage of truck (x1), 2) pavement grade 

 (x9), 10) proximity of ramps 

(x10), 11) work zone location (x11), 12) work zone duration (x ), 13) work time (x ), 14) 

work day (x14), 15) weather condition (x15), 16) pavement conditions (x16), and 17) driver 

composition (x17). A detailed discussion of impact of these factors is presented in Adeli 

and Jiang (2003). 

Symbolically, the work zone capacity can be expressed as a function of 17 variables 

defined in the previous paragraphs:  

 others are numeric 

such 

 

(vertical slope in the longitudinal plane) (x2), 3) number of lanes (x3), 4) number of lane 

closures (x4), 5) lane width (x5), 6) work zone layout (x6), 7) work intensity (x7), 8) work 

zone length (length of closure) (x8), 9) work zone speed

12 13

   ),,,( 1721 xxxfy K       (1) 

Among the seventeen variables, some are linguistic such as work zone layout and 

weather conditions, some are binary two-valued parameters such as the interchange effect 

representing the existence of ramps near or within work zone, and

=

as the work zone length. The variables are quantified and normalized using the 

methods described in Adeli and Jiang (2003). Spline-based nonlinear functions are used 

to quantify each linguistic as well as binary-valued variable mathematically. Spline-based 

nonlinear functions are also assigned to numeric variables in order to model the impact of 

their variations on the work zone capacity.  
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CLUSTERING-NEURAL NETWORK MODELS  

General Topology of Neural Networks  

Artificial neural networks have been shown as a powerful tool for solution of 

comp

ith large numerical values over the variables with small numerical values, 

thus improving the accuracy of estimating w

convergence of the network training. The normalized variables are denoted by q1 to q18 in 

Figure 1. A bias node with the value of one (q0 = 1) is added to the input layer. Without 

the bias, the hyperplane separating the patterns is constrained to pass through the origin 

of the hyperspace defined by the inputs, which limits the adaptability of the neural 

network model.  The parameter represe

The number of nodes in the hidden layer, N+1, is equal to the number of cluster 

cent

licated problems not amenable to conventional mathematical approaches (Adeli and 

Hung; 1995; Adeli 2001; Adeli and Karim, 2001). The topology of the neural network 

models for estimating the work zone capacity is presented in Figure 1. It consists of an 

input layer, a hidden layer, and an output layer. The input layer has 18 nodes representing 

the 17 variables defined in the previous section and an 18th node to indicate the data 

collection locality. The values of the variables in the input layer are normalized to values 

between 0 and 1 employing the S-shape and Z-shape spline-based nonlinear functions as 

explained in Adeli and Jiang (2003). The normalization prevents the undue domination of 

variables w

ork zone capacity and accelerating the 

ijw  nts the weight of the link connecting the 

normalized input node i to node j in the hidden layer 

ers used to characterize and classify any given training data set. For the number of 

nodes in the hidden layer, instead of the trial-and-error approach commonly used in 
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creating the neural network topology, the subtractive clustering method described in 

Adeli and Jiang (2003) is used. In Figure 1, the variables in the hidden layer are denoted 

by 1p  to Np . A bias node with the value of one ( 0p  = 1) is also added to the hidden layer 

for the same reason described earlier. The output layer has only one node for the 

estimated work zone capacity. The estimated work zone capacity, Ĉ , is obtained from 

the clustering-neural network model as the aggregation of the weighted outputs of N+1 

hidden nodes as follows: 

∑=
N

=
jj pwĈ        (2) 

first term in the summation (for 

j 0

) represents the bias and wj is the weight where the 0=j

of the link connecting the jth node in the hidden layer to the output node. 

Clustering-RBFNN 

Adeli and Karim (2000) used the fuzzy c-means clustering algorithm to improve the 

performance of RBFNN for another pattern recognition problem, the freeway traffic 

incident detection problem. Karim and Adeli (2003) present a fuzzy-RBFNN model for 

mapping eleven quantifiable and non-quantifiable factors influencing the work zone 

capacity to the work zone capacity. In this work, the Gaussian function is used as basis in 

the hidden or the radial basis function (RBF) layer of the neural network model in the 

following form (Figure 2): 

⎟⎟
⎟

⎜⎜
⎜= 2

2

2
exp j

jp
σ

  j =1,2,…, N     (3) 
⎠

⎞

⎝

⎛ −

j

cq
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2∑= XX  is the Euclidean distance, p  is the value of the jth node in the where 
18 i

hidden layer, q is the  vector of the normalized input variables, cj (j =1, …, N) is 

the  vector of the jth clustering data center, which are determined by the subtractive 

 In Eq. (3), the factor 

j

118×

118×

clustering approach, as are the optimum number of clusters, and N is the number of radial 

basis functions which is also equal to the optimum number of clusters. 

j  is the influencing range of the Gaussian function 

y: 

σ

centered at cj, whose squared value in this research is approximated using the mean 

squared distance between cluster centers, as expressed b

∑
=

−=
M

i
ijj N 1

22 1 ccσ     j =1,2,…, N     (4) 

where M is the total number of training data sets. The work zone capacity estimated by 

the clustering-RBFNN model is obtained as the aggregation of the weighted outputs of 

N+1 hidden nodes from Eq. (2).  

the hidden nodes to the output node are 

updated by minimizing the mean squared error (MSE) of the normalized work zone 

capacity and using the gradient descent optimization algorithm described in Adeli and 

Jiang (2003). Two stopping criteria are used for convergence of the clustering-RBFNN 

model. One is the acceptable mean squared error value (0.001 used in this study) and the 

other is the maximum number of iterations (400 used in this study).  

hidden layer (i.e. the RBF parameters cj defining the cluster centers) have to be updated 

in every iteration, similar to a standard multiple-layer feed-forward neural network. In 

 The weights of the links connecting 

In a conventional RBFNN, the weights of the links connecting the input layer to the 
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contrast, in the clustering-RBFNN model used in this research, the centers of RBF 

clusters ( jc ) are determined in one step using the subtractive clustering approach, 

resul

The BP neural network (Hagan et al., 1996) has been popular because of its 

simplicity despite its slow convergence rate for complex pattern recognition problems 

constrained optimization 

approac

Χp

ting in substantial speedup in the training convergence of the network and reduction 

of computer processing time for training the network. 

Clustering-BPNN 

(Adeli and Hung, 1994). It is based on the gradient descent un

h where weights are modified in a direction corresponding to the negative 

gradient of a backward-propagated error measure. In this research, the simple BP neural 

network algorithm is integrated with the subtractive clustering technique and used as an 

alternative approach for estimation of work zone capacity. The output of the jth hidden 

node in the BP neural network, jp , is determined by the sigmoid activation function 

(Figure 3): 

jj ))exp(1/(1 −+=  j =1, 2, …, N    (5) 

where ∑
=

      (6) 

=
18

0i

qwX  is the aggregation of the 18 weighted normalized input variables 

plus the bias (for i = 0). The output value estimated by the clustering-BPNN model is 

obtained also using the sigmoid activation function as follows: 

iijj

))exp(1/(1ˆ ΧC −+=
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where ∑
=

e clustering-BPNN model: 1) weights 

the input layer to the hidden layer are required to be updated in 

each it

city compared with the clustering-RBFNN model. 

Train

m California (from the late 1960's) and Ohio 

were also available to the authors but are not included in this study because those from 

=
N

j 0
 is the aggregation of the weighted outputs of N nodes in the hidden 

layer plus the bias (for j = 0). 

Figure 3 shows the architecture of the clustering-BPNN model for the work zone 

capacity estimation. There are a number of differences between this model and the 

clustering-RBFNN model shown in Figure 2. In th

jj pwX

of the links connecting 

eration of training the network, 2) aggregation is executed in both hidden and 

output layers, 3) a so-called momentum term is added to the weight modification equation 

or learning rule to help prevent the neural network getting trapped in a local minimum 

(Hagan et al., 1996), and 4) the over-generalization problem is avoided by employing an 

optimum generalization strategy (Adeli and Jiang 2003) for training the neural network. 

The resulting clustering-BPNN model requires more computation time for estimating the 

work zone capa

TRAINING AND VALIDATING THE NETWORKS  

ing 

 The data used to train and validate the neural network models are collected 

primarily from the literature and complemented by data obtained directly from North 

Carolina Department of Transportation. The collected data sets from four different states 

and city of Toronto are divided randomly into training, checking, and validation data set, 

as summarized in Table 1. Limited data fro
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Calif

9 training data sets in Table 1 are displayed in Figure 4. It 

is no

 Eight sets of validation data sets selected randomly from the collected data sets 

-neural network models (Table 1). The 

input

ornia are too old and those from Ohio are too few to represent typical work zones. 

None of the data set includes all the 17 input variables used in the new computational 

model. The number of input variables provided ranged from four (number of lanes, 

number of lane closure, work zone intensity, and work zone duration) to fourteen 

(percentage of heavy trucks, grade of pavement, number of lanes, number of lane closure, 

work zone intensity, length of closure, work zone speed, proximity of ramps to work 

zone, work zone location, work zone duration, work time, work day, weather conditions, 

and driver composition). For those unavailable input variables, values of zero are 

obtained after variable quantification and normalization, as described earlier.  

 Training of neural networks is performed similar to the approach used in Adeli 

and Jiang (2003) and skipped for the sake of brevity. Convergence results for training the 

networks based on the entire 3

ted that the convergence rate for the clustering-RBFNN is substantially faster than 

the clustering-BPNN. On a 1.5GHz Intel Pentium 4 processor, the CPU time for training 

the former is 0.25 seconds and the latter 1.42 seconds.  

Validation  

are used to validate the accuracy of the clustering

 values for the 8 data sets are summarized in Table 2. There are two sets from the 

states of Indiana, Maryland and Texas each, and one set from North Carolina and 

Toronto each.  
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The work zone capacities estimated by three different models, the neuro-fuzzy logic 

(Adeli and Jiang, 2003), clustering-BPNN, and clustering-RBFNN models, are 

summarized in Table 3. The root of mean squared error (RMSE) values obtained for the 

three models are 229 vph, 215 vph, and 114 vph, respectively. As such, based on the 

limited training and validation data used, the clustering-RBFNN model provides the most 

accurate results. The error percentage for this model ranges from 0.1% to 8.7% (with one 

exception the error is generally under 5%). For the other two approaches, the error is in 

general less than 10% with the exception of one case for each method.   

The clustering-RBFNN model appears to have the attractive characteristics of 

training stability (the training results are not sensitive to the initial selections of the 

weights), accuracy, and quick convergence. In the next section, the clustering-RBFNN 

model is used to perform a parametric study of the main factors affecting the work zone 

PARAMETRIC STUDIES OF WORK ZONE CAPACITY  

This study is done for an actual freeway work zone scenario with measured data 

provided in Dixon et al. (1997). The work zone site is a two-lane rural freeway on I-95 in 

North Carolina with one lane closure (Figure 5a). Dixon et al. (1997) provide values for 

only nine out of seventeen input variables used in the computational models created in 

this research, as summarized in Table 4. Data are not provided for pavement grade, lane 

rk zone speed limit, proximity to a ramp, weather and 

pavem

trucks, work zone configuration, layout, weather conditions, pavement conditions, work 

capacity.  

width, work zone length, wo

ent conditions, and driver composition. Parametric studies presented in this paper, 

however, are for eleven factors influencing the work zone work intensity: percentage of 
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zone lane width, pavement grade, presence of ramps, work day, and work time. The 

impact of other factors is not investigated because insufficient data existed in the neural 

network training data set available to the authors.  

Work Intensity 

Work intensity in the parlor of the freeway work zone is a qualitative and 

subjective concept without any standard classification scheme. In this research, the work 

intensity is divided into six categories from the lightest to the heaviest, represented 

nume

Keeping all other variables in the given work zone constant, the work zone 

rically by one to six, respectively, as summarized in Table 5. Keeping all other 

variables in the given work zone constant, the work zone capacities for six different work 

intensities are estimated using clustering-RBFNN model. The results are summarized in 

Table 4 and displayed in Figure 5b, which shows the work zone capacity reduces with an 

increase in the intensity of the work, as expected.  

Percentage of Trucks 

capacities for nine different percentages of truck, ranging from 8% to 30%, are estimated. 

The results are summarized in Table 4 and displayed in Figure 5b, which shows the work 

zone capacity reduces with an increase in the percentage of trucks, as expected. The 

measured value provided by Dixon et al. (1997) for the truck percentage of 26.2 is 1284 

vphpl. The clustering-RBFNN model provides the estimate of 1265, with a small error of 

less than 2%.  

Work Zone Configuration, Layout, and Weather/Pavement Conditions 
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P

r way with three-lane closure (Figure 6). In 

 is open. The results are summarized in the Table 6. For a 

single open lane, the work zone capacity reduces as the total number of lanes increases. 

Compared with a two-lane freeway, this reduction is only 1% for a three-lane freeway, 

but 9% for a four-lane freeway. This suggests that for a four-lane freeway a cost-benefit 

analysis should be performed for the option of keeping two lanes open versus 

maintaining just one lane open. The results of parametric studies indicate that the work 

ficantly with the number of freeway lanes as well as number of 

The per lane work zone capacity for the merging layout is about 14% more than 

that for the crossover layout and about 8% more than that for the shifting layout. The 

work zone capacity for the sunny weather (dry pavement) condition is about 6% more 

than that for the rainy weather (wet pavement) and about 10% more than that for the 

snowy weather condition.  

arametric studies of work zone configurations include the total number of lanes (2, 

3 or 4), number of lane closures (1, 2 or 3), and work zone layout (i.e., merging, shifting, 

and crossover). Further, the influence of weather conditions (i.e., rainy or snowy) and 

pavement conditions (i.e., wet or icy) on the work zone capacity are also investigated. 

The work zone configurations are shown in Figure 6 and their results are summarized in 

Table 6 and graphically shown in Figure 7. 

Three different work zone scenarios are studied. Scenario 1 is for a two-lane 

freeway with one-lane closure, Scenario 2 is for a three-lane freeway with two-lane 

closure, and Scenario 3 is for a four-lane f ee

all scenarios only one lane

zone capacity varies signi

lane closures which is consistent with the study on freeway work zones in Texas by 

Krammes and Lopez (1994).  

 222



 

Work Zone Lane Width and Pavement Grade 

Keeping all other variables in the given work zone constant, the work zone 

capacities for seven different lane widths, ranging from 2.7 m (9 ft) to 3.6 m  (12 ft) in 

e of the pavement grade, the estimated work zone capacity ranges 

ollowing observations are made. The work zone lane widths in the 

 exacerbates the traffic flow constriction (e.g., speed) and affect drivers’ behaviors, 

f 3.6 m (12 ft). 

of ramps on 

f ramp proximity to the work zone is illustrated in 

re in the presence and absence of a ramp are 

increments of 0.15 m (0.5 ft) are estimated for two cases, in the presence and absence of 

the pavement grade. The results are shown in Table 7 and graphically in Figure 8. In the 

presence of the pavement grade, the estimated work zone capacity ranges from 1054 

vphpl (for the smallest lane width of 2.7 m) to 1342 vphpl (for the largest lane width of 

3.6 m). In the absenc

from 1262 vphpl (for the smallest lane width of 2.7 m) to 1862 vphpl (for the largest lane 

width of 3.6 m). The f

range of 3.3 m (11 ft) to 3.6 m (12 ft) (the U.S. standard lane width) do not affect the 

work zone capacity by any significant measure. As the work zone lane width reduces the 

work zone capacity decreases significantly. The presence of the work zone pavement 

grade

resulting in a significant reduction in the work zone capacity in the range of 20% for a 

work zone lane width of 2.7 m (9 ft) to 39% for a width o

Presence of Ramp 

 The neural network models take into account the effect of presence 

the work zone capacity. The presence of ramps is treated as a qualitative variable instead 

of a quantitative one. An example o

Figure 9a. The work zone capacities estimated for a two-lane rural freeway on I-95 in 

North Carolina with one lane closu
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summarized in Table 8 and shown in Figure 9b. The presence of ramp reduces the 

capacity by 12.6%.  

Work Day and Work Time 

Work zone capacities for four combinations of work day (weekday or weekend) and 

work time (daytime or night) are summarized in Table 8 and presented in Figure 9b. 

Since in all likelihood commuters and regular travelers during the weekdays are more 

ng 

study performed in this research can quantify this 

observation. The estimated capacities for the weekend are about 37% smaller that those 

for the weekday during both daytime and night.  

 The driver behavior and traffic characteristics differ during daytime and nigh 

time. Night construction can decrease the work zone capacity because of the reduced 

travelers’ attention and inferior visibility during nighttime (Al-Kaisy and Hall 2001). 

Again, the results performed in this research can quantify this observation. The estimated 

work zone capacities for construction at night are 10-11% smaller that those for the 

construction at daytime. 

FINAL COMMENTS 

 The results of validation indicate that the work zone capacity can be estimated by 

clustering-neural network model in general with an error of less than 10%, even with 

limited data available to train the models. With additional data and training of the models 

familiar with the configuration of the work zone and the traffic control plans in the 

affected areas (e.g. route diversion) than non-commuters (e.g. tourists) traveling duri

the weekends, the work zone capacity is somewhat larger during the weekday than during 

the weekend. The parametric 
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the accuracy can be improved substantially. The computational models presented in the 

paper are general. adaptation of the 

work zon  two-lane rura ay o Nort wi closure. 

There is  to offer ge ralized co

However, the computational dels prov  a powerful ol to perf  parametric 

studies for other work zone situations. 

 The results of a parametric study of the factors impacting the work zone capacity 

can assist work zone engineers and highway agencies to create effective TMPs for work 

zones quantitatively and objectively. To the authors' best knowledge this quantitative 

parametric study is the first of its kind. A number of observations are made based on the 

limited data available for training the models. There is a definite need to collect 

additional data for various work zone conditions. Such data will have two significant 

applications. First, they can be used to further train the clustering-neural network models 

in order to improve the accuracy of work zone capacity estimation. Second, they can be 

used for more detailed sensitivity analysis.  
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Table 1 Training, checking, and validation data set  
52 data sets State Index Training Checking Validation 

Indiana 1 9 1 2 
Maryland 2 9 1 2 
North Carolina 3 7 1 1  
Texas 4 7 1 2 
Toronto 5 7 1 1 
Total 39 5 8 
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ation models 
1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

Data 
set 

Truck 
(%) 

Grade 
(%) 

No. 
of 

lanes 

No. of  
Lane 

closures 

Lane 
Width Layout Work 

Intensity

Length 
of 

closure 
(km) 

Speed 
(km/h) Ramp Location Work 

dur. 
Work 
time Work day Weat

C te her 
ond. 

Pa
C

ve.
ond.

Dri
com

ver 
p. Sta

1 32 - 2 1 - M 6 11.7 - - Rural Long Day Weekday - - - ana Indi
2 10 - 2 1 - C 2 11.7 - - Rural Long Day Weekday - - - Indiana 
3 8 5 4 1 - - 1 0.18 48 Yes Urban Short Day Weekday Sunny - 0 land Mary
4 8.5 0 4 2 - - 6 2.2 34 Yes Urban Short Night Weekday Sunny - 0 d Marylan
5 26.2 - 2 1 - - 6 - - - Rural Long Day Weekday -  a  - - N. Carolin
6 - - 4 1 - - 1 - - - - Short - - -   - - Texas
7 - - 5 3 - - 3 - - - - Short - - -   - - Texas
8 - 3 3 1 - - - - - - Urban Short Day - Sunny y 1  onto Dr  Tor

 

 

 

Table 2 Input values for 8 work zone scenarios used to validate three work zone capacity estim
Var. x

M = Merging,   C = Crossover,     - Unavailable data 
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parisons of the work zone capacity estimates by neuro-fuzzy logic, clustering-BPNN,
 

 

Neuro-fuzzy logic (
(vph) 

(Adeli&Jiang, 2003) 

Clustering-BPNN 

Ĉ )  (vph) 

Clustering-RBFNN  

  (vp

 and clustering-RBFNN models  

 

 

Table 3 Com

iĈ ) 

( i ( iĈ ) h) State 

Data set 

number 

 Open 

lanes
Closed 
lanes 

Measured 
value (Ci) 

(vph) Values 
(vph) 

Error 
(%) 

Err
(%

Values 
(vph) 

Val
(vp

ues 
h) 

or 
) 

Erro
(%) 

r 

1 1 1 1308 1320 1.4 1287 0.9 1326  1.6 Indiana 
2 1 1 1595 2138 34.1 1265 20.7 1540 3.4 
3 3 1 5205 5343 2.6 4982 5 1  4.3 211 0.Maryland 
4 2 2 2456 2652 8.0 2624 6.8 2588 5.4 

North Carolina 5 1 1 1284 1290 0.5 1287 0.2 1264  1.6 
6 3 1 4590 4649 1.3 4200 8.5 4563 0.6 Texas 
7 2 3 2680 2900 8.2 2779 3.7 2914 8.7 

Toronto 8 2 1 3904 3779 3.2  2.8  4039 3.5 3793

Root mean square error = 
8

)ˆ(
8

1

2∑
=

−
i

ii CC
 

229    215  114



 

 Table 4 f trucks  
tate: North Ca    Locatio ong-term 
umber of lane      N                        
ork intensity: 6                      W      
easured work zone c : 1284 vphpl 

 Work zone capacity variations with work intensity and percentage o
S rolina            

s: 2              
n: Rural                       Work duration: L

s: N umber of lane closure
ork tim             

1    Truck percentage: 26.2
      Workday: weekday W

M
e: day

apacity
ork intensity 1 2 3 5 6 4 W

Capaci  (vphpl) 1522 1505 1 1276 1265 ty 1515 342 
Percen ge of trucks (% 8 16 20 26.2 30 ta ) 12 24 
Capaci  (vphpl) 1548 1409 1314 1265 1264 ty 1513 1268 
Work intensity: 1=Lightest, 2=Light, 3=Moderate, 4=Heavy, 5=Very heavy, 6= Heaviest 
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Table 5 Classification of work zone intensity 
 

 

 

Intensity level e description Work type exampQualitativ les 
1 Lightes  Median Installat  barrier tion or repair 
2 Light  Pavement repair 
3 Moderate  Resurfacing  
4 Heavy  Stripping 
5 Very he g avy  Pavement markin
6 Heavies  Bridget  repair 
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Table 6 Variation of work zone capacities with influencing factors 

Factors Scenario
s No. of lanes No. of lane 

closures 
Estimated 

capacity (vphpl) 
Work zone 1 (8a) 2 1287 1 
configuratio

n 2 (8d) 3 1274 2 

 3 (8e) 4 1171 3 

 Scenario
s Layout Estimated capacity (vphpl) 

Work zone  1 (8a) Merging  1287 
layout 2 (8b) Shifting  1193 

 3 (8c) Crossover  1112 

 Scenario
s 

Weather 
condition 

av
condition 

Estimated P ement 
capacity (vphpl) 

Weather/ 1 Sunny Dry 1287 
Pavement 2 Rainy Wet 1213 

 3 Snowy Snowy/Ic 1159 y 



 

Table 7 Work zone capacities with lane width and pavement grade 
 
 

 
 

 
 
 
 
 

 

 

Estim one capacity (vphpl) ated work zLane width 
(m) With pavem Without pavement grade ent grade 
2.70 1054 1262 
2.85 1132 1422 
3.00 1225 1615 
3.15 1294 1761 
3.30 1327 1830 
3.45 1339 1856 
3.60 1342 1862 
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Table 8 Work zone capacities with influencing factors 

 

Group Scenario
s Location Ramp Estimated 

capacity (vphpl) 
Work zone 3 No Rural 1287 

Location/ramp 4 Rural Yes 1143 

Group Scenario
s W e Workday Estimated 

capacity (vphpl) ork tim

 1 Daytime Weekday 1287 
Work day/time 2 Night Weekday 1164 

 3 Daytime Weekend 934 
 4 Night Weekend 847 
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Figure 1 Topology of the neural network models for estimating the work zone capacity 

Ĉ = Estimated work zone capacity  
N = Number of clusters
pj = jth variable in the h
q  = ith normalized input variable 

eigh f
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idden layer 

i
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Figure 2 Architecture of the
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ustering-RBFNN model for estimating the work zone capacity 
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Iteration number 
1 30 60 90 120 150 

b) Clustering-RBFNN 

gure 4 Convergence curves for training the clustering-neural network models 

Iteration number 

a) Clustering-BPNN 

Checking data sets 

 Training data sets 

1 700 1400 21000 2800 3500 4200 4500 1960 

Point of optimum generalization Iteration 
number 1960 (minimum point of checking 
data curve)  

 Training data sets 



 

 

 
 
 

(a) Work zone configuration 
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(b) Variation curves 

 
Figure 5 Variation of work zone capac sity and percentage of trucks (Th  top 

horizo xis represents 

percentage of trucks) 
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Figure 6 Work zone configuration and layout 
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Figure 7 Variation of work zone capacities with work zone configuration, work zone layout, and 

weather/pavement conditions 
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(a) Configuration 
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 (b) Variation curves  

 
Figure 8 Variation of work zone capacities with lane width and pavement grade 
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Figure 9 Variation of work zone capacities with workday and work time as well as work zone location and 
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